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FOREWORD

This publication includes individual papers of Damping '91 held February 13-15, 1991, San
Diego, California. The Conference was sponsored by the Wright Laboratory, Flight
Dynamics Directorate, Wright-Patterson Air Force Base, Ohio.

It is desired to transfer vibration damping technology in a timely manner within the aerospace
community, thereby, stimulating research, development and applications.
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The 'Society-f Da~nping Technology' in Japan and the Activities

with the trends of the damping materials & technology in Japan

Abstract

The development activities of damping materials and their technologies in

Japan have been given an active life speedily in the past several years. As the

examples, the application of damping materials to the floor panel of motor

vetricle body and the utilization of laminated damping steel sheets by various

industries in Japan will be reviewed in this report.
Ihen, a report will be made on the activiticz :f Society c-- Damping

Technology in Japan, a society which was inaugurated with the background

situation as indicated in ihe above. Among various activities performed by the

society, a report will be made particularly on the outline of round robin test

which was conducted by the society. The report will be concluded by a summary

uf L>, turE trends to be realized in Japan and the role of the society to be

played in the accomplishment of such targets.

I Background

1.1. The Trends of Damping Materials in Japan

Stimulated by the enforcement of the regulations for the prevention of

environmental pollution by the Japanese Government, particularly of the noise

control regulations on motor vehicles, the application of damping materials has

been ipidly and widely spread among various industries in Japan. This trend

has been further enhanced by the fact that the industries become aware that the

reduction of vibration and noise in products will heighten the value of their

products in the market.

It has been realized that an appropriate damping effect can be achieved by

an addition of damping material ( such as free layer bonding type ) or by

replacement ( such as laminated damping steel sheet ) without altering a

structure of product to a large extent.

Damping mech ansnr and material characteristics, however, are not known well

by the people ir, Japan except for a certain number of technical experts and

researchers. When an application of damping material is not made appropriately,

the damping effect could be reduced drastically or sometimes may bring an

AAC-2



adverb effect- and ends up with a wrong appraisal being cast upon it. Having

such a situation in the background, interests in damping materials among the

industries in Japan had been increased to an extent that Society of Damping

Technology in Japan was inaugurated.

In the following, an application of damping material to the floor panel of

motor vehicle body and a utilization of laminated damping steel sheet by

various industries in Japan will be discussed.

1.2. Application of Damping Material to Floor Panel of Motor Vehicle Body

The historical trend of patent application in Japan for the damping

materials for a use of damping floor panels of motor vehicle body is shown in

Fig.l. (1 Applications fnr materials used for sound absorption, sound

insulation and damping are included in this figure and the hatched portion in

it corresponds to the number of patent application for the damping materials.

It is obvious that the number of patent application increased quite remarkably

with the advent of1980. As stated in the above, the trend clearly shows the

heightening of technical interests in noise reduction obviously as the result

of the stimulation given by the enforcement of noise control regulation.

Fig. 2 shows the historical trend of noise level prevailing in the interior

of passenger cars produced and marketed in Japan. 2' The chart shows that noise

reduction of some 8 dB(A) was realized in the past 10 years. This is obviously

the result of the application of noise reduction methods stated in the above.

Fig. 3 shows the proportions by weight of noise control materials used in

passenger cars. (2) Approximately half of the weight is taken by th- damping

materials. Majority of the damping materials indicated in this diagram are of

asphalt materials and will be bonded as free layers type.

While damping materials are used widely as the principal means for noise

control, materials having much better damping capabilities and lighter weight

are being sought after earnestly with an aim of further reduction of noise

level as well as vehicle weight. In order to achieve such purposes, adoption

of composite materials and constrained layer damping system, foaming of damping

layer, etc. have already been tried.

1.3. Laminated Damping Steel Sheet

Fig. 4 shows the transition of production volume of laminated damping sheet

in Japan. 2 A sudden increase in production is seen in the latter half of 80s.

After the enforcement of Phasell of the noise control regulation in '83, the
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use of laminated damping steel sheet for the stamp formed engine oil pan

was commenced. The consumption of the material by the electric home appliance

industry was increased much after they adopted it for foaming the outer panel

of home washing machime.

Fig. 5 shows the breakdown by weight of the application of this material for

various industries in Japan. " The consumption by the motor and electric

appliance industries are by far the largest, howmver, the applications for

building mater;als and general machineries are being increase gradually.

Table I shows examples of laminated damping steel sheet application by various

industries. Obviously the materials are used for noise reduction of various

products.

2 Society of Damping Technology in Japan

2.1. lnaugurat:on of Society

As elaborated in the above, the application of damping materials for the

purpose of vibration ai-d noise reduction has become very popular in Japan and

the market segments of products where the super great quality is given by

damping materials have been expanded. But there ore many subjects left unsolved

in the technical aspects of damping materials. Mutual recognition of such

problems, efforts in exploring their solutions and deepening people's

understanding in damping materials are essential for their popularization

and growth. Society of Damping Technology in Japan was inaugurated for the

achievement of those objectives.

2.2. General Policies of Society's Activities

The general F,, c of this society's activities shall be;

Actitities will be centered in the industries, that is, the various seeds

and need- fr, r damping materials and technologies present in the industries

would be n icked p widely and discussed in various aspects.

Public relati c,)5 activities to be made by each member company in auxiliary

t, the abov, ,t .'it e* will be oermitted.

SExchane of frmrM!inns and conversations between and among makers, users

ap'J rofjtr i .r S (.such aS research institutions, universities,

;r , e tc. ) on the subject of d am ing materials will

h ,c-l, w, be made jointly on the subjects relative to the

dari r ipg. '. F, il be made prMrie pal y by the study and technical

: w: " ' ,;-,rE ,roup subordinate to tiose committees.
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.Publicity-activities on damping materials and technologies in such forms

as lecture class, issuing manuals on measuring methods and utilization

technologies.

2.3. Organization of Society

The society was inaugurated in July 1988 with the assistance of Tokyo

Metropolitan Industrial Technology Center. The society's secretariat is located

in that center. When the first general assembly of the society was held at the

time of inauguration, there were 39 corporate members, 6 private members and

3 special members making the total of 48 members. The society now has the total

of 145 members which consist of 120 corporate, 22 private and 3 special

members. The number is still being increased by the enrollment of several

new members in every month.

Fig. 6 shows the main business activities and involvement in damping

materials by the society members. "' About a half of the members are

in nonmetallic industries ( many are in polymer industries ) and belong to

the maker's side of damping materials. About 35 % are on the user's side coming

from fairly wide range of industries. The rest are from the neutral

institutions and industries. In an aspect of involvement in damping materials,

it is recognized that members representing many sections are in a good

harmonious balance.

Fig. 7 shows the organization structure and activities of the society. Under

the executive committee formed by President, Vice President and chairman of

each committee, there are a secretariat and 5 committees ( 2 in business

handling and 3 in research and study ). There are number of working group

under the supervision of each research and study committee and the main

activities of the society are pursued by those people.

2.4. Activities of Research and Study Committees

Researches and studies in various subjects related to the damping materials

and technologies are actually carried out by 3 research and study committees

together with working groups ( W/G ) placed under them as shown in Fg. 7.

Domestic and international literature study W/G collects the literaturL, and

papers on the damping materials and technologies issued widely ir ,a ,.j , r!:

cierseas countries mostly supplied by the members and put them in a data h-se.

Damping '89 W/G was tormed for the study of technical reports in Proceedings ot

Damping '89 Conference.
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Fig. 8 shows all measurement data obtained by the cantilever method. As the

end clamping was not rigid enough, dispersal of damping characterist, - r,

bending mode of first order, where the influence of boundary condition is

largest, is noted. It was also revealed that several test data contained

problems due to data analysis by FFT (Fast Fourier Transform).

Fig. 9 shows a graph in which data with the above problems are all omitted.

The dispersal of damping characteristic measurement data is also made smaller.

The results of measurement by the members, except for data B of an original

steel beam having a small loss factor q -value , are fundamentally consistent

even though somewhat smaller data dispersal is still evident. Further study to

explore the cause of such dispersal is required.

3.3. Both End Free with Center Excitation Method

All measurement data obtained by both end free with center excitation method

are shown in Fig.10. An impedance head is installed in this method on the

center portion where an excitation is applied. The exciting input and the

vibration response are measured by it. Data with fairly large dispersal are

included in this case, too.

Fig. 11 shows the excitation structure applied in the test. The method in

which a nut is used for clamping as shown in the figure will present a problem

in processing the damping layer at the portion where it is tightened by the

nut, for example, damping layer is cut or tightened together with steel sheet.

In a method where an extension rod is used, it is noted that the bending mode

of steel beam, the main target of measurement, tends to be mixed with

unnecessary mode because the excitation structure is not installed accuratejy

on the center of a test piece.

Fig. 12 shows the graph where the data containing problems are a:ll ot tead

A i n the canti lever method, all the measurements are cons stent except 0 or

data B. Further exploration is also necessary to the cause of data disrersa.

stilii left on this graph.

3.4. Summary

A ' the results b , rnhIt. n ,- from the round robin test performed by the

rtr' data of stee Lear ha. g sr, r v J

than 0.01 and f n the Teasurement data in which the cause of large dse sai

,:. are f uunn t he fuid mr:i1 1 , cons i stent IL th each otr

-iet that a:; org aa asic r c, for the mea, sr emont are carefL1 ly
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observed, a dispersal of measurement can be minimized.

The values shown in Fig. 9 te 12 are consistent with each other and the fact

suggests that the var iation due to different methods of measurement can also be

minimized.

However, some signiticant dispersal of data is still present even after

those data are screened and, therefore, further exploration is still required.

It is intended that supplementary tests on the dispersal of data on steel beam

bonded with free layet damping material and round robin on laminated damping

steel sheet will be carried out in this year for the clarification of the

subjects and problems associated with the measurement methods.

4 Conclusion

4.1. Damping Materials and Technologies in Japan

(1) The product value of damping material has been recognized by the people

quite recently.

01 They are very effective means for the reduction of noise and vibration.

. The spreading of use has been expedited by turning them into massproduction.

(2) New problems have appeared, on the contrary.

1The damping method alone can not, in many cases, insure a satisfactory

resu Its.

lImprovements in the ratio of cost and weight vs 77-value and in the total

performance of the materials are required.

(3) Under the circumstances, the future course shall be;

(iHigh performance

H i gh - -va !ue ( -ss factor)

Fr r dyer i'!mping type -- Constrained layer damping type,

M er ?r! ; ulruvement5, etc.
MuIlt pke func ionirl:; (mu I layers, composition)

.::)Hf gh' , ;e ,,e , j : . ::i;', y ! r [ re . " _.

, t y'ILT ta q.;>. .e

4 t.2 .T '. (rut o cost anj weight vs -,-valee)

4.2. Soc eK,: :e :
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(1) Contribution to new developments in the damping by the study and research

works to be made on this subject.

(2) Engaging in the publicity activities of the damping materials and

technologies to expand the bottom layer of the needs.

(3) Grasping the needs and seeds through the exchanges of information and

conversations among and between the makers and users of damping materials

and neutral institutions and industries, and feeding them back to all

members.

4.3. Final Conclusion

It is my great honor and pleasure to have been given an opportunity of

making a presentation on the trend of the study in damping and the

activities of Society of Damping Technology in Japan to this conference in the

presence of the most prominent people of the damping technologies in the world.

It is my strong personal belief that the society in Japan should also try to

enhance their, international activities from now on. I believe the cooperation

of all the ni4mbers present here will be honored and appreciated by all the

members of the society in Japan. Thank you very much.
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Expor Authof t 22 CFR 125 4(b) (13)

Integral Damping Treatment for Primary Aircraft Structures

by

123Sal Liguore , Marty Ferman2 , Rudy Yurkovich3

McDonnell Aircraft Company
McDonnell Douglas Corporation

St. Louis, Missouri

ABSTRACT

The dynamic response of primary aircraft structure to buffeting flows,
high acoustic levels, and shock boundary layer interaction has led to
premature structural fatigue failures on current aircraft and is anticipated
to be a continuing problem in the future. Increasing structural
strength/stiffness can be a solution but this approach adds weight fn the
aircraft. Since the problem is dynamic response, increasing the amount of
damping in the structure can also be a solution. If integral damping is
considered as a part of the original design, a lighter weight design can
result. The application of integral damping to primary aircraft structure was
investigated and its effectiveness in controlling the primary structural modes
was assessed. The findings show the approach is feasible. A simulated
aircraft structure was tested with damping treatments applied. The most
promising damping concepts were then analytically evaluated on the F/A-lB
vertical tail.

I. Engineer, Structural Dynamics and Loads
P.O. Box 516, Saint Louis, Missouri 63166-0516
Mail Code 0341180, (314) 232-3109

2. Pr. Tech. Specialist, Structural Dynamics and Loads

3. Sr. Pr. Tech. Specialist, Structural Dynamice and Loads



BACKGROUND

Adding significant damping to reduce the primary structural mode response
of lifting surfaces on aircraft can be challenging. The damping in these
modes during flight can be high due to the aerodynamics present. For example,
a 10 percent structural damping coefficient In the wing first bending mode is
typical. Thus, in order to reduce the response by half, this aerodynamic
damping level must be exceeded if the damping treatment is to be effective.

In 1987 as part of McDonnell Aircraft Company's Internal Research and
Development (IRAD) program, a combined analytical and experimental program to
explore the usage of viscoelastic damping In primary aircraft structure was
initiated. As part of this study, the F/A-l8 horizontal tail was selected for
a primary structure damping treatment, Reference I. The goal was to cut the
stabilator response in half. The damping treatment consisted of a stiff
graphite epoxy constraining layer adhesively bonded to the stabilator by 3M
ISD-113 viscoelastic material. Modal loss factors as a function of
temperature, as predicted by analysis and as measured by the experiment, are
shown In Figure 1. As can be seen from the figure, the measured damping is
considerably less than predicted from the analysis. The discrepancy between
measured and predicted values was attributed to only having a 60 percent bond
between the stabilator and patch. The difficulties of applying a stiff sheet
to a sculpted surface produced poor bonding, thus limiting the effectiveness
of the treatment.

24

Orthotropic Constraint Layer (tc- 0.094 In, P, 0.057 b/In, - 0.02 in)

20

Analysis
16

Modal
Damping 12

Percent . Test

-20 -80 -40 0 40 80 120 160 200 240 280
Viscoelastc Temperature - OF

aP03-067O. 0-i-Ds

Figure 1. F/A-18 Horizontal Tall Constralned Layer Damping Treatment
Second Bending Mode

Curing 1988, as part of the above research program, several integral
damping treatment concepts for the F/A-l8 vertical tall were analyzed,
Reference 2. The scooe of the Study was expanded to Include not only the
constrained-layer damping but also damped-link and tuned-mass damper
concepts. In general, the modal strain energy (MSE), other than that
concentrated at the root suoport was evenly distributed throughOut the skin

BAA-2



structure. This type of MSE distribution is inhibitive to layered damping
treatments. The reason is that a constraining layer thickness that
effectively extracts MSE from the first bending mode is unlikely to be
successful on the first torsion mode. Also, the F/A-18's tall surface is not
conducive to a constrained-layer damping treatment due to the unevenness of
the composite skin. The conclusion from this study was that none of the
constrained-layer damping treatments produce the desired levels of structural
damping. The main reason cited was that global modes require a global
treatment unless concentrations of MSE can be identified. The damped-link
failed to produce the required levels of damping because there was not enough
relative motion to add any significant damping. Damped-links are analogous to
a shock-absorber and require that their end-points have large relative
displacements. The tuned-mass-dampers (TMD) did offer some promise; however,
the difficulty in practically applying this technology makes it the least
favorable alternative. Some of the inherent problems in the construction of
the MD are creep and displacement control. For the F/A-18 vertical tail
application, the most critical parameters are the control of modes over a wide
frequency and temperature range. TMD designs are limited to one condition or
one modal effect.

In a parallel effort to design a damping treatment for the F/A-18
vertical tail, Reference 3, a scaled test article was developed to quickly and
economically demonstrate the viability of an add-on damping treatment concept.
Using this test article, viscoelastic tuned beam damper concepts were
demonstrated in controlling the primary modes. A response plot with and
without the viscoelastic tuned beam damper is shown in Figure 2. There is a
significant reduction in the response of the second mode with the damper
installed. The tuned beam damper was found to be effective in controlling the
important modes of the beam structure within the weight limitations.

60
Damper Weight: 0.21 lb With tuned damper

Test Article Weight: 7.8 lb "

40 -
15.1

11.3 22.1

20 -

Transfer
Function . \

g/-b4o 1

10 30 50 70 90 110 130 150

Frequency - Hz
GP03 067G-2 Dks

Figure 2. Response Data for Cantilever Beam With and Without TMD
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SUBSCALE STRUCTURE STUDY

' c I3us studies had identified many damping concepts dnd provided
, -- Dng of empennage structural response. In continuing this

,,itrust was to investigate, in a more controlled manner, the
eitified damping concepts. We used a subscale structure that

.. e vibrational characteristics of the F/A-18 vertical tail. Two
ets were tested using this subscale structure which is a simple

.wn in Figure 3. The box beam was of a single cell construction
:,inum structure. The box beam is 48 inches long (of which 12
,,jD s ort root) by 18 inches wide and 3 inches deep. A tip mass

a s:: i mulate the lowest frequencies of the F/A-18 vertical tail.

.... .. . .. " " :" ;- R ibs

LtrlS pport Brace

Figure 3. Single Cell Box Beam Structural Configuration

'r; t.ne single cell box beam test article, two damping concep's were
d partial exterior add-on treatment and an integrally damped
treatment. Modal and dynamic response tests were performed to

.t-ised levels of damping in the primary (first bending and first
, econdary (panel) modes of the box beam.

. was tested in a cantilevered configuration, Figure 4. A complete
survey was conducted to establish frequencies, mode shapes, and

" for the first bending and torsion modes and the first panei
: ins. The mode shapes, frequencies, and dampinq are shown in
c ed vibration tests using random and sine excitation were

jring these tests transfer functions were measured at various
'he untredt.d Structure to provide a baseline from which the

ro :re damped structure could be compared.



Bcx Beam

Accelerometer

Mounting Sha
Table

C-PC3C T Gf ,7( s

Figure 4. Box Beam Vibration Test Setup

Frequency: 18.22 Hz Frequency: 54.76 Hz
Exciter Location: Station 37 Exciter Location: Station 37A Damping Ratio (C/CC): 0.0281 B Damping Ratio (C/CC): 0.0075
Exciter Force Level: 6 lb RMS Exciter Force Level: 6 lb RMS

37 37 -. "

Frequency: 67.96 Hz Frequency: 79.20 Hz
Exciter Location: Station 37 Exciter Location: Station 37

C Damping Ratio (C/CC): 0.0051 D Damping Ratio (C/CC): 0 0066
Exciter Force Level: 6 lb RMS Exciter Force Level: 6 lb RMS

37 37

Figure 5. Mode Shape Plots of the Primary Modes of the Baseline Box Beam



The damping treatments tested consisted of: a stand-off damping treatment
applied to the outer skin, and an adhesive or "interface" damping layer
applied between the skin and spar-caps. The stand-off treatment consisted of
an 0.080 inch thick syntactic foam layer adhesively applied to the skin with a
0.005 inch thick layer of 3M 468 and a double application of 0.005 inch thick
3M ISD-1I2 and 0.010 inch thick soft aluminum constraining layer, Figure 6.
The treatment was applied in 12 by 15 inch sized patches to all four exposed
panel areas (top and bottom) on the box beam, Figure 7.

0.010 in. Aluminum 0.005 in. 3M 112 Adhesive

0.080 in. Stand-Off Foam- \Skin

0.005 in. 3M 468 Adhesive

GP03 0670-6-D/dpl

Figure 6. Stand-Off Damping Treatment Design Configuration

Stand-Off Damping
Treatment Top and
Bottom Skins/1/

GP03 C670 Z kas

Figure 7. Stand-Off Damping Treatment on the Box Beam

For the "interface" damping treatment, a 0.02 inch thick damping layer of
3M ISD-113 was bonded to the spar caps and then the skins were fastened in
place with adhesive, Figure 8. The previous damping treatment of the
statd-off material was not removed (the effect on the primary mode response
was minimal and the accelerance frequency response functions were less noisy.)
The effects of th,  two treatments were assumed to be additive, with the
initial effect known.
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Figure 8. Spar/Skin Joint Damping Treatment on the Box Beam

The vibration test results are summarized in Figure 9. These results
indicate that the exterior damping treatment is effective in reducing the
response of the primary structure, but it is even more effective in reducing
response in the local panel modes of vibration, Figure 10. An increase in
damping of 29 percent in the first bending mode was observed. This is a
significant increase in damping, considering that the baseline first bending
modal loss factor was 0.064. A 94 percent reduction and a 77 percent
reduction from baseline response in the first and second panel modes was
measured.

Baseline Stand-Off Interface
Mode
Shape Freq Modal Loss Freq Modal Loss Freq Modal Loss

(Hz) Factor (Hz) Factor (Hz) Factor

First Bending Primary 18.22 0.056 17.87 0.092 19.30 0.103

First Torsion Primary 54.76 0.015 54.77 0.026 44.09 0.082

First Panel (Front Panel) 67.69 0.010 78.89 0.163 Not Determined

Second Panel (Back Panel) 79.20 0.013 89.03 0.052 Not Determined

GP.3 06709 Ddpt

Figure 9. Box Beam Damping Test Results Summary
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Figure 10. Overlay of the Box Beam Baseline and External
Tape Random Response Transfer Function

The interface damping concept increased the damping in the first bending mode
and caused an additional 13 percent reduction in response or a 39 percent
reduction overall from the baseline response. The damping treatment was more
effective in damping the first torsion mode. The combined effects of the
standoff and the interface damping treatments caused an 82 percent reduction
from the baseline c-rsion mode response. A decrease in stiffness of 19.5
percent from the baseline torsion mode frequency was observed which was
observed by the decrease in the modal frequency from 54.77 Hz to 44.09 Hz.

F/A-18 VERTICAL TAIL APPLICATION

For the major case of interest here, the F/A-18 vertical tail is
subjected to severe buffeting forces at angles of attack above 20 degrees.
These buffeting forces cause very high dynamic response in the primary modes
of the tail; i.e., zero to peak amplitudes in excess of 500g have been
observed in flight. If the objective is to cut the buffet response in half,
then the level of structural damping in the vertical tail needs to be
significantly increased.

In order to investigate the effectiveness of damping to control the
vertical tail response during buffeting flow conditions, buffet response
calculations were made using simulated levels of structural damping. The
simulated damping levels are assumed to come from the inclusion of the damping
treatment to the structure. Unsteady pressures during buffet were measured
during the wind tunnel program described in Reference 4. These pressures were
scaled to aircraft size and were used as the forcing function in the response
calculation. The scaling method and calculation approach are also described
in Reference 4. The results of the calculations are shown in Figure 11. The
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F/A-18 Vertical Tail Buffet Response Predictions
With/Without Damping
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data are presented in the form of bending and torsion moment PSD's for a 14
percent and 66 percent span station. For the condition of Angle of Attack of
32 degrees, Dynamic Pressure of 347 psf and Mach Number of 0.6, the first
bending mode dominates inboard bending moment responses, and the second
bending mode dominates the outboard bending moment responses. The overall RMS
response reductions, (Figure 12), suggest that 50 percent is the maximum that
can be obtained from a damping increase alone.

As previously mentioned, analytical studies for primary structure
damping treatments fur the F/A-18 vertical tail, Reference 2, had concluded
that constrained-layer damping could not be effectively included because the
structure itself was well designed with no areas of major strain energy
concentrations. For the F/A-18 vertical tail application two treatments were
analyzed. These consisted of a "hybrid" design of the solid spacer treatments
identified in Reference 2 and the interface concept which was tested using the
subscale structure. Analyses of these two treatments required extensive
modification of the existing F/A-l8 dynamic finite element model, shown in
Figure 13, in order to examine the damping treatments. The damping concepts
were each individually modeled and extensively analyzed using the MSE Method,
Reference 5, for various damping configurations.
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Figure 12. RMS Damping Response Normalized to the Baseline RMS Response
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Figure 13. MSC/NASTRAN Dynamics Model of the
F/A-18 Vertical Tall

INTERFACE DAMPING CONCEPT

The interface damping treatment required that a layer of shear deformable
elements be included between the spar cap and skin. Hence, an extra set of
nodes was placed underneath the existing spar cap nodes. This model reflects
the detail in the primary load path (skin through fastener to spar) needed to
analyze the problem sufficiently. In this concept, Figure 14, a portion of
the beam shear load is transferred through the VEM located between the
moldline skin and substructure. The remaining load is carried through by the
fasteners. In the study, fasteners were assumed to be either widely spaced or
were excluded from the model. Both variations of the interface concept will
be discussed.
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Figure 14. A Structurally Integrated Passive Damping Concept

The Interface layer was included into the detailed F/A-18 vertical tail
as a shear panel with the transverse degree-of-freedom (DOF) rigidly
constrained between the spar cap and skin element DOF. When the fastener
effects were included, they were modeled with rigid bar-type elements in all
DOF. The treated areas of the structure are shown in Figure 15. With
fasteners, this treatment only produced 1.5 percent and 2.0 percent MSE in the
first and second bending modes and nearly 8 percent MSE in the first torsion
mode of the vertical tail. Without the fasteners, 3 percent and 4 percent MSE
were produced from the first bending and second bending modes, respectively.
When no fasteners were assumed to be in place, the modal strain energy
produced in the first torsion mode increased to a peak MSE of 12 percent
(Figure 16), but at a subsequent loss in stiffness of the structure noticed as
a decrease in frequency, Figure 17.

SOLID SPACER DAMPING CONCEPT

Previously, this concept had been analyzed in two solid spacer
arrangements, Figure 18, and neither concept showed any significant benefit
for further evaluation. However, it was thought that a combination of t >± two
concepts, Figure 19, would show the necessary levels in damping that would
make this concept a candidate for future design application. Thus, the
damping treatment was evaluated.

The combination of the three damping layers allows for shear deformation
to take place in all three layers. If only the center-plane layer existed
with the two rigid spacers rigidly attached to the skins, then no relative
shearing could take place in that layer. This is because the vertical tail is
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Figure 15. Solid Spacer Damping Treatmewnt Coverage on the Vertical Tall
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FIgure 16. Interface Damping Treatment With No Fasteners
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Figure 17. Interface Damping Treatment With No Fasteners
Modal Frequency Dependence on Shear Modulus
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Figure 18. Solid Spacer Damping Treatment Concepts
Reference 2
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Figure 19. Hybrid Solid Spacer Damping Concepts
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constructed of skin and multiple spar which is thus quite rigid in shear .4th
no relative shearing motion between the skins of the tail. When two skin
damping layers are held by one solid spacer, only a minimal amount of damping
can be produced from these layers. This is similar to trying to damp a very

6.6 .: 1,6 . ,1 t~; '11 t ~ g -4til~ 611 1ii, V~ 6c~g,~t app id f 1
either side. But, when the solid spacers are decoupled from both skins and at
their center plane by a soft viscoelastic layer, dramatic shear relief is
exhibited in all of the layers. In fact, as the center layer becomes weaker
and thicker, the damping in the skin layers will begin to maximize shear
effects by increasing the amount of relative displacement between the skin and
solid spacer.

This treatment was applied continuously between the spars over the shaded
portions of Figure 15. It includes an integral damping treatment for the
leading edge as well as the main torque box. Sensitivity studies were
performed on the effect of the shear moduli in the different layers including
the shear stiffness of the solid spacers. The first bending mode has very
little dependence on any of the parameters considered. Damping of this mode
is heavily dependent on the stiffness at the root of the tail. For the first
torsion and second bending modes, the parameters that optimize the strain
energy in these modes i& opposing. For instance, the torsion mode yields 9.2
percent modal strain energy at a G=in/Gcore - 500 psi/1000 psi, where Gskin
is the shear modulus of the skin side damping layer and Gcore is the shear
modulus for the damping layer at the center plane, and the second bending mode
maximizes at 7.7 percent at Gsk in/Gcore - 20 psi/OO psi. Finally, more
strain energy can be produced in the bending modes when the solid spacer is
assumed to be very rigid. The above studies assumed the shear modulus of the
solid spacer to be Gsacer - 500,000 psi. As an upper limit, 22.0 percent MSE
was produced In the VEMfor the second bending mode, 4.7 percent MSE for the
first bending mode and 6.0 percent MSE for the torsiop mode when Gskin/Gcore
20 psi/O0 psi with a rigid spacer, Gspacer • 50 x 10 psi.

The negative aspect of this treatment is that it adds nearly 40 pounds
per tail. This does not reflect any optimization by placement or geometry to
reduce the weight penalty. The weight penalty was imposed by the use of the
spacers which accounted for 85 percent of the weight increase. These spacers
were modeled with solid finite elements which were assumed to represent hollow
tubes made of composite materials and very stiff In shear. The overall weight
of the damping treatment could be reduced by removing the treatment from
certain areas of the structure that had little effect on the modes of
interest. For instance in the first bending mode, the leading edge and lower
to mid tail regions contribute the most to the damping increase. In the
second bending mode, the mid region contributes the most to the damping
increase. In the present vertical tail structural arrangement, it would not
be practical to try to use this treatment in areas obstructed by wire bundles,
hydraulics, and fuel lines.

CONCLUSIONS

Viable integral damping concept have been shown to merit further full
scale evaluation. The analysis of the Interface damping concept shows that it
can be tailored for specific damping, strength and stiffness requirements by
altering the structure fastener spacing. Evidence from the study shows that a
reduced number of fasteners Is required for the Interface concept because
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aircraft standards for fastener spacing along a spar results in an overly
rigid structure which inhibits any shear relief through the VEM. The analysis
of the solid spacer concept proved the proof-of-concept and showed that it
would be a candidate for future aircraft. However, a damping concept of this
sorL wili neeo to be curnsiuereo in L'ie iiiitiai design pnase in oraer Lo ,,dKe
the concept more weight efficient.
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AN INVESTIGATION OF ADD-ON DAMPING TREATMENT FOR LIFE EXTENSION

OF THE F-15 UPPER OUTER WING SKIN

M. Parin, V. Levraea, A. Pacia, and L. Rogers

Flight Dynamics Directorate
Wright Laboratory

Wright-Patterson AFB, OH

.ABSTRACT

The purpose of this investigation was to design, fabricate,
and verify candidate add-on damping treatments for the F-15
upper-outer wing skin. The F-15 upper-outer wing skin has
experienced high cycle fatigue cracks caused by separated flow on
the upper wing surface. The separated flow results during high
load factor maneuvers and in turn induces large vibratory loads
-n the upper wing skin and associated substructure. The
capabiiity of the 7-15 to sustain these maneuvers allows the
excitation to occur for sufficiently long periods of time to
result in damage. Damage accumulates due to the resonant
vibration of local skin/stiffener modes The cracks initiate at
the fastener holes adjacent to the integrally machined "T"
stiffeners and tend to propagate parallel to the stiffeners. Two
damping treatments resulted from the investigation and ore
recommended for F-15 fleet retrofit. One was an external
constrained-layer treatment and the other was an internal "stand-
off" treatment. Laboratory vibration, corrosion, and thermal
aging tests were conducted as part of the development of the add-
on damping treatments. Life extension factors were estimated for
both damping treatments.

INTRODUCTION

The requirement for high performance fighter aircraft places
tremendous demands on the components and materials from which
these aircraft are constructed. Inherent with high performance
are high vibration levels. One possible cause of large vibratory
loads is separated flow. Separated flow presents an
unpredictable and complex environment. Within this environment
it is often impossible to estimate the precise dynamic flow
characteristics or loading conditions aircraft components may
experience during flight. If not properly accounted for in the
design phase, large vibratory loads can result in high cycle
fatigue and a substantial reduction of the useful service life of
the component. Skin type components, in particular outboard wing
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skins, are relatively light weight structureis which are extremely
susceptible to vibration response induced by separated flow.

The F-15 upper-outer wing skin (UOWS) panel has experienced
cracks resulting from high cycle fatigue. The F-15 aircraft,
shown in Figure 1, has sufficient thrust to perform sustained,
high load factor maneuvers. Consequent separated flow over the
wing panel contains high-level broad band random pressure
fluctuations and induces large vibratory response in the UOWS
panel and associated wing substructure. The resulting elevated
stresses over time cause high cycle fatigue cracks to form in the
wing skin Historically, UOWS cracking dates to the late 1970's
and early 1980's. At that time, the cracks were considered to
occur only over a small portion of the skin closest to the wing
tip. Subsequent finding show that the entire UOWS is prone to
cracking.

The UOWS was originally designed for a service life of 8000
hours. Unfortunately the initial service life realized was only
250 hours. Several modifications were incorporated to improve
the fatigue life of the skin, including fortifying critical
locations on the wing skin. The modifications were initially
thought to have resolved the fatigue cracking problem. In
reality these changes only increased the life of the skin to
approximately 1250 hours. The need still remained to increase
the service life to the original design value of 8000 hours.

The purpose of this investigation was to design, fabricate,
and vexiZy candidate add-on damping treatments for the F-15 UOWS
which would alleviate the occurrence of fatigue cracks caused by
separated flow on the upper wing surface and increase the UOWS
service life to the desired 8000 hours. Two candidate damping
treatments resulted from the investigation and were recommended
for F-15 fleet retrofit. One treatment was a field installable
external system and the other an internal depot installable
system. Neither system required modifications to the existing
wing structre.

BACKGROUN

The F-15 UOWS is machined from a single block of 2024
Aluminum (Al) and consist of t he skin, integrally machiued "T"
stiffeners, and chamically milled pockets between the stiffeners.
The thickness varies from location to location on the panel,
however assuming a constant thickness of 0.080" is sufficient for
understanding the problem. Figure 2 shows the major substructure
for the left wing. The UOWS extends from rib 153 to rib 224, and
from the front spar to the rear spar. There are intermediate
ribs at locations 172, 188, and 206. At rib 188, the front,
main, and rear spars are at 10%, 45%, and 65% chord,



respectively. Collectively, the above mentioned members
constitute the outer wing torque box. The wing skin measures
approximately 5 feet wide by 7 feet long measuring along rib 188
and the main spar, respectively. Inboard of rib 155 the wing is
"wet", that is, the volume is usad for fuel storage. The outer
torque box is "dry". Blind threaded, flush fasteners are used to
attach the skin to the rib and spar substructure. A scrapped
right hand UOWS is shown in Figure 3. Visible in Figure 3 are
the integral stiffeners, their runouts, spar and rib fastener
holes, and various panel access holes. Stiffeners are numbered
consecutively starting at the UOWS leading edge. The stiffeners
are not clipped to the ribs but are allowed to move freely within
the rib notch. The cracks develop in the rib fastener holes
adjacent to the stiffeners. Predominately, the cracks initiate
either perpendicular to the ribs or parallel to the stiffeners.
A damaged UOWS, showing the crack pattern, is presented in Figure
4. Figure 5 shows close-ups of the cracks. Based on the crack
patterns and the unclippod stiffener design, it was concluded
that the UOWS cracks were mcst likely induced by stiffener
rotation. Figure 6 gives 2 convenient shorthand designation for
the spar-rib bays which will be used throughout the remainder of
this paper to aid the reader in locating specific portions of the
UOWS.

The UOWS cracks are caused by high cycle fatigue. Damage
accumulates due to resonant vibration of local skin/stiffener
modes, excited by external oscillatory pressure resulting from
separated flow. The excitation occurs during high load factor
maneuvers. The capability of the F-15 to sustain these maneuvers
causes the excitation to occur for sufficiently long periods of
time to result in damage. Other investigations concerning the
aerodynamic characteristics of the V-15 suggest that 120
angle-of-attack provides the most severe disturbances and
consequently the most damage.

The location of UOWS fatigue cracks evolved during the
course of this investigation. Initially, the concern was for the
web of stiffener 4 in bay Li (see Figure 6) and over rib 206
between bays Li and L2. Next, it was observed that cracks also
occurred over rib 188 between bays L2 and L3. Finally, it was
learned that cracks occur over ribs 188 and 206 between the main
and rear spars. Ribs 188 and 206 themselves crack, but were not
specifically addressed in this study. The numerous access holes
in bays L4 and R4 result in a significantly heavier structure and
made this area less susceptible to fatigue cracking. Thus, with
the exception of bays L4 and R4, high cycle fatigue cracks were
observed over the entire UOWS panel.

RAB-J



FLIGHT DATA

Flight d&ta wore gathered to obtain 1OWS response
information during hir. load factor maneuvers and to assess the
effectiveness of 'ee damping system. These test were conducted
by McDonnell Aircraft Ccrporation, St. Louis MO \MCAIR), at the
request and sponsorship of Warner-Robins Air Logistics Center.
Numerous other investigations have provided some flight data
along with data reduction and analysis. These investigai-iona
showed that obtaining accurate UOWS panel response data was
highly dependent on whether the panel had been installed properly
and the instrumentation used effectively. Inconsistencies in
these two areas, among others, can easily lead the investigator
to erroneous results. The flight test data collected for this
investigation included th baseline response of th% F-5 UOWS as
well as the U600 Za p.nzz with various candidate damping
treatment configurations. Str.,in gages placed on internal and
external surfaces of the r anel were used to record the bulk of
the response data. In some cames internal acceloromiters were
also used. Figure 7 shows the location of some of tbe strain
gages used to obtain flight data. The strain gages were mounted
adjacent to stiffener #4 at rib 188. One was positioned between
the two rows of rib 188 fastener holes and the other was located
just inboard of the fastener hults. The log-tion and orientation
of these strain gages were auch that the strains Inducing the
fatigue cracks should be measured. Historically, many cracks
have been discovered along stringer #4. Based on past analyses,
it was observed that the response data obtained at the
intersection of stiffener #4 and rib 188 could be used to
represent the response over the remaining panel. Thus, the
analyses performed centered on the UOWS response measurements
taken at this location.

A plot of ar;,!m-of-attack (AOA) versus dynamic pressure (q)
is given in Figure 6 for typical flight conditions for which high
load factor maneuver data was gathered. The ranaA of dynamic
pressure, 350 pal to 500 psf, for the 120 AOA shcown in this plot
illustrates the dif.:ficulty, if not impossibility, of duplicating
the service conditions for which damage is induced. The power
spectral density (PSD), shown in Figure 9, is typ...l of the UOWS
response at the strain cage locations shown in Figure 7 for an
undamped panel. :h4 f>Light conditions for this PSD were: 1i*
AOA, 5.9g load factor, 0.80 Mach, 20,000 feet altitude, and 424
psf dynamic pressure. Figure 9 shows high strain levels occur in
the 300 to 400 He; 4z) band. :t is obv_-us that this peak
makes the most si7 i. contribution to cumulative high cycle
fatigue cra-k d-A

Several damping treatment configuration. -4sre flight. tested.
The external anl tnternal treatments which were recorrmended for
F-15 retrofit wce inclld~d in the flight tA!1 lassoing
treatments. Unfortunately detailed data is nc- yet available and
will not be availak lo efcre printing of this report; thus no



specific flight test results can be presented. The preliminary
fligI t test results received from MCAIR are very promising and
appear to significantly improve the UOWS fatigue life. MCAIR
ivill release the final report near the end of calendar year 1991.
The aibove mentioned damping treatments will be discussed in
detail in the next section.

DAMPING TRZATMENTS

This study investigated the performance of 13 different
candidate add-on damping treatment configurations under
laboratory conditions. For brevity only the "1980 Damping
Treatment" and the two new damping treatments which were
recommended to Warner-Robins Air Logistics Center are discussed
in this section. Past damping experience suggested that a
constrained-layer type damping treatment would offer the most
viable, cost effective solution. A constrained-layer damping
system consists of a layer of viscoelastic material (VEM) which
is constrained by a metal layer. The layers of viscoelastic
material and metal taken together are called a constrained-layer.
Often these types of damping system will be constructed of
multiple constrained-layers to achieve the desired level of
damping. Whenever the structure undergoes bending, the metal
layer will constrain the viscoelastic material, resulting in
shear deformation of the VEM. Energy is dissipated due to this
shear deformation.

An important part of designing a damping treatment is
determining the environmental condition to which the treatment
will be exposed and insuring the selected treatment will
withstand and perform properly under these conditions. Critical
environmental considerations include the operational temperature
range for which damping is desired, the effects of the damping
treatment on corrosion of the structure, and the effects of
thermal aging on the performance of the damping treatment.
Recent laboratory corrosion testing shows no degradation in
corrosion resistance caused by the application of the recommended
damping treatments. The corrosion test panels were exposed to a
standard 30 day humidity corrosion environment in the laboratory
consisting of 1200 F, 98% relative humidity (RH), and salt spray.
The addition of the damping treatments had no affect on
corrosion, primarily because the paint was not disturbed during
installation. Extensive service experience with similar dam-ing
treatments has not revealed any corrosion problems. For example,
the "1980 Damping Treatment" has flown externally on
approximately 300 aircraft for 10 years with no adverse affects
on corrosion. Although the requirements used to develop the
thermal aging tests were Judged to be excessive, satisfactory
thermal aging characteristics have been demonstrated in the
laboratory for all materials used in the new damping treatments.
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The temperature exposure of 8 hours at 340' F plus 48 hours at
2700 F was intended to be a conservative design condition for the
8000 hour life; however, these exposure levels are believed to be
more severe than necessary. Thousands of hours of F-ill service
data establish that total outside air temperature (TOAT) exceeds
1250 F less than 1% of the time. Laboratory teats confirmed that
thermal aging caused the damping material to slightly stiffen
which tended to increase damping treatment effectiveness. An
additional issue of practicality includes being able to inspect
the UOWS for structural integrity while the damping treatment is
installed. The damping treatment configurations used in no
instance covered up fasteners or locations where the cracks
initiate. Therefore, the damping treatments will not hinder
inspection of the UOWS either visually or radiographically and
the treatments also will not impact removal or installation of
the UOWS or other maintenance functions. A discusnion on the
selection of the damping treatment design temperature follows.

A plot of Mach number versus altitude ic presented in Figure
10 for the F-15 aircraft. Included on the plot are standard day
constant value curves for the following parameters: dynamic
pressure (q), total outside air temperature (TOAT), and maneuver
load factor. The load factor is for an r-15 with a gross weight
of 42,000 pounds z:ying at a 12' AOA. The equilibrium
temperature for the wing skin and the installed damping treatment
will fall between the TOAT and the ambient temperature. The
large dash marks in Figure 10 indicate planned data gathering
flight conditions. Because the ratio of oscillatory pressure to
dynamic pressure tends to be a constant in the subsonic flight
regime, the oscillatory pressure (thus the cumulative damage)
increases as Mach 1.0 at sea level is approached from the upper
left on the graph. The structural limit of the F-15 is 8g's.
Based on this, a temperature range from 500 F to 750 F was
selected for the damping design. No cumulative damage was
expected below V° F or above 125* F.

A previous attempt by MCAIR to correct the UOWS fatigue
cracking included the application of a multiple cop'wtrained-layer
damping treatment referred to as the "1980 Damping Treatment".
The treatment was applied externally over bay .4 nO the skin (see
Figure 6) because at the time, the fatigue cracks considered
to occur only in this outer spar-rib bay. ii 'onsisted of 3
constrained-layera aach of which contained a 0.002" layer of ISD-
112 VEM and a 0.005" layer of aluminum. Figure 11 illustrates
the "1980 Damping Treatment". The "1980 Damping Treatment" was
installed and flown or numerous operational F-15 lircraft but it
proved to be .,nsu-ceaeful an eliminating thos UOIWS fatigue cracks.

As previously '&~oed, the Flight Dynamis Directorate
developed two new damping treatments which were recommended to
W-R ALC for F-15 fleet retrofit. The treatmer,.n consisted of an
externally appiied, field installable syst-., ?-nd ar internally
applied, depot installable system. Figure 12 3howe the
recommended external troatment's multiple (4' ronstrained-layer



configuration. Two different constrained-layers were used in the
design. One consisted of a 0.002" layer of ISD-112 VEM which was
constrained by 0.005" of aluminum and the other was made of a
0.002" layer of ISD-113 VEM also constrained by 0.005" of
aluminum. Two each of these different constrained-layers were
used to build-up the total of four constrained-layers in the
external treatment design. The use of two VEMs broadened the
effective temperature range relative to the "1980 Damping
Treatment". The six outer most spar-rib bays were covered (Ri,
R2, R3, Li, L2, and L3) by the external treatment. Figure 13 is
a photo of the external treatment installed on an F-15 wing.

The recommended internal treatment is summarized in Figure
14. Starting at the wing skin, there was a 0.004" layer of
pressure sensitive adhesive (VIM). Next there was an 0.080"
stand-off layer of syntactic foam configured to maintain high
shear stiffness and low flexural stiffness. This was achieved by
cutting a checker board pattern into the syntactic foam.
Finally, three constrained-layers of damping material were placed
on top of the stand-off layer. The first constrained-layer (from
the bottom) consisted of 0.004" of VZM and 0.005" of aluminum.
The other 2 constrained-layer each consisted of 0.002" of VEM and
0.005" of aluminum. For all layers the Hueston Industries F-440
VIM was used. The internal damping treatment was applied in the
chemically milled pockets between the integral stiffeners for all
8 spar-rib bays shown in Figure 6. Additionally, there were
viscoelastic links (VELs) placed between the caps of the integral
stiffeners and the notches in the rib. The VELs were located in
all rib notch locations. The VEL material was slightly tacky at
room temperature. A VIL thickness of 0.50" was used to provide
an interference fit. The purpose of the VEL was to provide a
link (having both stiffness and damping) from the stiffener cap
to ground (rib notch) thereby reducing stiffener rotation.
Figure 15 shows the stand-off damping treatment applied to the
internal surface of the wing skin. Figure 16 shows the VELs
located in the rib notches.

The installation of the damping treatments was simple and
straight forward. First the UOWS was cleaned to remove all oil
and dirt. Next, the external damping treatment was pre-cut to
fit between the fastener rows for each spar-rib bay. The
treatment was cut to insure that access to the fasteners was not
impaired. A small amount of split peel ply or rolease paper was
removed from the bottom of the damping treatment, exposing the
first layer of VEM. The damping treatment was then carefully
centered onto the appropriate spar-rib bay. Finally, the
procedure was to gradually remove the release paper from undt:
the damping treatment while simultaneously adhering the
treatment. Special care was necessary to minimize entrapped air
bubbles. A small, flat plastic scraper was rubbed over the
surface of the external treatment as it was applied to squeegee
out as much air as possible. This step is illustrated in Figure
17. A nice feature of the external damping treatment was that
small amounts of compound curvature could be accommodated without
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adversely affecting the quality of the application.

The internal stand-off treatment was applied in a similar
manner except additional effort was required to avoid damaging
the brittle stand-off layer. The pieces of internal damping
treatment were much smaller than the external damping pieces and
therefore air entrapment was not a problem. Hand pressure was
sufficient to apply the internal treatment so the plastic scraper
was not used. The VELs were provided with release paper on the
surfaces which were to adhere to the skin stiffener and the rib
notch. During installation, the releasG paper on the rib notch
side is removed and the VEL is positioned in the rib notch. Just
before installing the skin, the second release paper is removed.
The thickness of the VEL was such that an interference fit
resulted; however, the force required to install the UOWS tightly
to the substructure was nominal and easily provids d by advancing
the fasteners.

Life Extension

A comparison between the response of the baseline UOWS and
the UOWS with the external damping treatment installed is
presented in Figure 18. The frequency response functions (FRFs)
are the acceleration FRFs which were integrated twice to obtain
the compliance (displacement) FRFs; the compliance FRFs were
assumed to be proportional to strain. Figure 19 makes a similar
comparison for the internal damping configuration. Notice the
dramatic, beneficial reduction in response. The comparisons in
this report were made on the basis of RMS stress rather than
comparing peaks. Figure 20 presents the equation used to
calculate a life extension factor. The ratio of the damped to
the baseline response is raised to the proper exponential to give
the life extension (is, ratio of life). The RMS of the
compliance FRF between 300 and 400 Hz was the basis of the
calculation. Calculations made in this manner revealed that the
UOWS with the "1980 Damping Treatment" would last A times as long
as the baseline UOWS (bare UOWS), thus the life e*x nsion was a
factor of 4. The life of the baseline UOWS is approximately 1250
hours, therefore the projected life with the 1930 Damping
Treatment is 5000 hours. Obviously, this is an estimate;
however, it does provide a measure of the damping treatment's
performance. Similar estimates gave life extension factors for
the new recommended external and internal treatments of 5 and 34,
respectively. The internal treatment is considered the primary
solution to resolve the UOWS high cycle fatigue cracking. This
is because of the dramatic reduction in response achieved when it
was installed. Its large life extension factor should offset a
variety of uncertainties not accounted for by _his investigation,
such as precise temperature at which damage accumulates, the fact
that RMS stresses were used instead of peak stresses, and
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potential changes in future operational usage.

The Fight Dynamics Directorate, at the request and
sponsorship of Warner-Robins Air Logistic Center tested 13
candidate add-on damping treatments for the F-15 UOWS. Of those
tested, two damping treatments were recommended for F-15 fleet
retrofit. One treatment was an externally applied coastrained-
layer treatment and the other was an internally applied stand-off
treatment with viscoelastic links in the rib notches. The
external and internal treatments resulted in life extension
factors of 5 and 34, respectively. Thermal aging and corrosion
tests were performed on the damping treatments with no adverse
effects noted. At this time, there is no evidence to indicate
that the recommended damping treatments should not be used to
alleviate the UOWS fatigue cracking. Three hundred F-15 aircraft
have accumulatsd ten years of service experience with the "1980
Damping Treatment" and to the authors knowledge there have been
no reports of concerns or adverse effects associated with add-on
damping treatments. It is projected that retrofit of the F-15
fleet with UOWS containing the internal treatment will result in
a net savings of $100M in maintenance and repair costs over the
next 25 years. The recomnded damping treatments are fully
qualified for F-15 fleet retrofit and represent a viable, cost
effective solution which will substantially improve the F-15 UOWS
service life.
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DAMPING TREATMENTS FOR AIRCRAFT
HARDMOUNTED ANTENNAE

Ralph E. Tate, Sr.'

LTV Aircraft Products Group
Dallas, TX

Carl L. Rupert
LTV Aircraft Products Group (Ret.)

Dallas, TX

ABSTRACT

The Air Force Wright Research and Development Center's Aircraft Integral Datip
ing Demonstration Frogramn is beisi conducted by LTiV to illustrate tWe advantages
of incorporating damping into aircraft structure during the design phase of develop
ment. The present study deals with the important Band 6, 7, 8 antennae packages
on the B-1B Aft Equipment Bay, where equipment failures are routinely occurring
(luring take-off maneuvers at maximum afterburner throttle settings. That damage
results from the intense vibroacoustical environment generated by the four three-
stage afterburning engines. Failure rates have been sufficiently high to warrant it
departure from the basic study to develop a "quick fix" solution involving add-oi
damping treatments, that can be installed in a short time with minimal modificationi
to the existing structure.

The approach used in this program was to analyze operiting ground test data
that were generated on the antennae components, in conjunction with analytical
models. Modal testing identified areas where damping treatments could be applied
to reduce the resonant effects of the local system. Various treatments were de-
veloped, analyzed, and tested initu on the aircraft. Thus, a cost effective and
technically viable solution to acoustically induced failures was achieved.

FULL PAPER NOT AVAILABLE FOR
PUBLICATION

'Sr. Engineering Specialist, LTV Aircraft Products Group, P.O. Box 655907, M/S-194/26, IDalla,
TX 75266-5907, (214) 268-8126
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EDMINATION OF BOUNDARY CONDITIONS
FOR

SIXTH-ORDIR DAMPED BRAM THEORY

by
Ralph K. Tate

LTV Aircraft Products Group
Dallas, TX

ABSTRACT

The purpose of sixth-order beam theory is to include the
effects of core shearing due to extentional deformation in
terms of the transverse displacements. The constraint to
eliminate the extentional motion reduces a twelfth-order
system of equations into a single sixth-order equation.

Since boundary conditions are necessary to completely
specify the solution of partial differential equations,
the author purposes to use this forum to present a
detailed derivation of the sixth-order equation of motion
using energy method techniques. The boundary conditions
follow naturally as a consequence of the energy method
formulation. The author show how two "natural" boundary
conditions are lost, and must be replaced by two "kine-
matic" boundary conditions. The author interprets the
boundary conditions and their consequences in the analysis
of damped beams.
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1.0 INTRODUCTION

Usage of constrained-layer damping composites for sound and vibration

suppression originated in the 1950's, perhaps earlier[k]; however, the un-

derlying theory was based on 4 th-order beam theory and presumed no extension-

al deformation of the laminate. In order to include the extensional flexib-

ility, severai authors developed 6 th-order beam and plate theories to de-

scribe the dynamic behavior of damped composite laminates [a,b,c,g,h,i]. The

purpose of the 6 th-order theories is to include the effects of core shearing

due to the extension of the face sheets, in terms of the transverse bending

displacements. The constraint to eliminate the extensional motion causes the

equations of motion to be of 6t h-order.

Dowellih] and Miles[c] derive the laminate equations using an energy

method approach to obtain the equations of motion. Dowell then retains terms

only to -t -order, since the adhesive shear layer is assumed stiff. The

resulting boundary conditions are those found for 4 th-order beam and plate

theory. Dowell's formulation is useful in evaluating the interlaminar shear

in fiber composites. Miles' obtains the 6t -orer equations as a side dis-

cussion to validate his model; he does not elaborate on the boundary con-

ditions required for solution for the 6 th-order systert Miles study pro-

cee s to thickness effects on damping.

Mead~a,b] and Abdulhadi[g] derive the equations of motion from a stan-

dard strength of materials perspective. This approach does not directly

yield 'he boundary conditions as part of the formulation. Abdulhadi also

does not articulate the boundary conditions n'cessary for solution: simply

supported boundary ccnditions are presumed. Mead develops the boundary

conditions and di9cuss3 the solutions for various boindary conditions.

Mayn-xr [I! namert-:,aIly evaluated the effect of Mead's boundary conditions on

1l~ss factor P*imate9. He also ohserved that Abdulhadi deleted two boundary
-ondlt ns -.- hi oIrut In. Eisentially, Ablulhadi's equations :,f

mot ie are Prpjl'.aien* t he 4*h-order PKU equations [k]. Maynor delineated

the pfftuit~e# and 1nmi.atl7ns i- using the 6t h-r~er equations.
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In the attached paragraphs, the 6t h-order partial differential equation

is obtained using energy methods. Subsequently, the boundary conditions are

obtained. The limiting procedure shows how two "natural" boundary conditions

are lost. Thus, two "kinematic" boundary conditions must be specified, that

further reduce the generality of the 6 th-order equation. The basic outline of

the paper begins with the derivation of the equations of motions following

Miles' assumptions, then validating the required boundary conditions used by

Mead. The ramifications of those boundary conditions are discussed.

2.0 VARIATIOKAL FOPMUIATIN OF THE SIXTH-ORDER BEM EQATICOS

The sixth-order differential equation governing the vibration of a three

layer sandwich beam will be derived using a variational approach. The beam

geometry is depicted in the preceeding Figure.

The kinetic energy of a the vibrating beam is given by:

- 1/2f L[mH w)2 1 )2] + m 2 [ 2 )2+ (2) 21] dx. (2-1)

Similarly the elastic energy due to deflection of the constraining skin mat-

erials is given by:

V 1/2 f 1I)1 (wi )2 (E) 2 (w2 R)2 + (EA) I (u 1)2 + (EA) 2 (u2)2] dx.(2-2)

The strain energy due to shearing of the adhesive core material is[d]:

V- 1/2 tb 3 2 dv dx, where Y- _w t Tu. (2-3)

o J0

The shear traction at the upper and lower surfaces of the adhesive is found

to be:

Y w it 2 + LU j (2-4a)

2t3 7t 3

¥2 "w 22 t2 tt I 1 Ll3 (2-4b)

7ho distributed shear strain throughcut the adhesive thickness 19:



- + ( 1  Y2)] (2-5)

After substitution and integration over the thickness, the strain energy due

to shearing of the adhesive is found to be:

V - 1/2 Gbt 3 ( 1 72 + (Y - Y7)2  cdx (2-6)

In order to apply Hamilton's Principle, the total energy in the vibrating

beam is given as Q-T-V -V +W , where

S .I , 2 , 1 w 2 " ";x,t) dx. (2-7)
f0

Applying Hamilton's Principle, the variational of the energy is minimized,

that is:

8J M 8 f Q(.) dt - 0.

Hence, the differential of J(.) is:

2j 8F1

8-j'(j![L68 1 + F 812 u L J, u (2-8)
1 0 u1 1

r2 a ar q "  2S2 + [L1i L [;a wl + L; I '8w, + LF .8wl

8'8 ' 8'F 'iN
2 8w2 + L .2 w d dt (2-8)

872w aw2 2 aw' 2 2 2 X

After integration by parts, the integral appears as:

8J_ (F[a d F u [ d IP
~~y. dt8~i dt I aw' +L d2wfl 1 xa)

1) 1 1 t1)81 222)

+ ) _ dtr d 2 .J -raw , (xt) ]w 2

+ F81 T 1xt 8W + J-x~-) V

[ Tx VLu 2- dx d x -

8_ +F L1'~ C - R (2-9)dx w +) +w' Vx 8ww d ) VR2B W~
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a F CF 1 [a F Ml' -8w! Fad1a5F w 82'~ ') + L -]8 1 ]''X-i8W' 157 +MLwJ'

+ Md 'I5w ,-aJ + V2 2 ' 8 r +[a T a1  K + T28jw t
12 22 2~ a

Equating each variational term to zero then yields the equations of motion

and the required "natural" (or force-type) boundary conditions. Thus, the

complete system of equations is found to be:

-0, 2 -
u dt. Q u 1 2 2

_F d " d Fsr + 2 FI
w d ' F - 2 M (xt), (Eqns. 2-10)

and LF dtd2  - dx + " P2 (xt)aw2  dt " 2) 2 'J 2 2 2

The system is subject to the following boundary conditions:

F T -, T T O, VdF - O,au au' 2' aw dxIx-L 2 x-1 ) I x-L
_ + 0, aF df' r 0, (Eqns. 2-11)

1I x-Q 2 2 x-L

_F d ( F - O F R_ M F J
w + Vd2 2 -w Ri aw L.

2 2 2 1 1 x-L 1 x

"- M 2  0, a- , + M0,+ T0 ,0, and L + T2  -0.
SR2 -L 2 x-O 1 x-O 2 x-O

The system is comprised of two fourth-order equations and two second-order

equations. The twelve "natural" boundary conditions completely specify the

solution. Hence, this set of differential equations is well-posed, as should

be expected.

Next, the various partial derivatives of F(.) are derived:
aF - F m M F - M aF m2 LF -EI F . -() wF

1 . m u 2 21 ' " 1 1 W 2m" (Ew 1 2 1 -w 2 ( 2 2

F -(EA) u' - -(EA) u
au I au 2 2

-U (12) (1+2a )WI 12 2 )w2'+2(11 ),
t

8u (1/2)Gb (l+2aL)wI + (l+2cz2 )w2 ' + 2 1-2

2 t'--



F =-(1/2)Gbt (2/3+2c (1+)]w ' + [-2/3+(1+a ) (l+Ot )+a t a ]waw' 3 I 11 1 2 1 22(l+2 (-U I-U2 and

a F
T --(1/2)Gbt (-2/3+(+L) (l+(2)+Cta2]w, + [2/3+2a (1+z )]wW'2 3 1 2 1 21 2 2 2 -

2 + (1+2o2) ( 1 Z )1 .

t3

After substitution into the (2-10) and (2-11), the equations of motion for

the system are obtained:

m1VI + (EIl1w1(4 )

-(1/2)Gbt3([2/3+2c&I (l+OtI) ]w" + [-2/3+(i+a ) (1+o 2)+a 1io2]w (2-12a)

+ (1l+2a) (ul '-U2') - X~

m 2i + (El) w (4)m2w2 2w2

-(1/2)Gbt3 ([2/3+ (1+CI) (+2)+Cot 2]w 1 " + [2/3+2 2 (1+ o 2)]w2" (2-12b)

+ (I+2aa) UI '-u2  " P(xt)'

m - (EA) 1u'- (1/2)Gb ((1+2a )w ' + (1+212 )w2  + 2 rut--2) ( 2 - 2 )
1 ' 1~u2 -u O 21c

m2u2  (EA) 2u2  + (1/2)Gb (1+21c)w I + (1+212 )w2  + 2fj1 2 0.(2-12d)

Correspondingly, the boundary conditions become:

(E 1 (3) _ (1/2):t 3([2/3+2 1 (1+C&1)]w1  + [-2/3+(i+a )(1+ 2 )  ]w 2
1)+ (1+2owi1) (1 1 2 Jw (2-13a)77 u-uL

(EI)w1(3 ) _ (1/2)Gbt 3 2/3+2L1(1+ot)]w1 , + (-2/3+(1+c) (1+a2)+Qla 2 ]W 2 '

+ (1+2a 1 )(u-- - VL (2-13b)

) ) [ X-O

(Ei) 2w2 (3 )  (i!2)Gbt 32[22/3+(l+ 1) (l+t2)+CLa2]w1, + [2/3+2o.2 (I+ ox2 )]w2(U u-uml ,,
+ (1+2a2 )I -U2j I - V

t 3 ) -

(El) 2w2  (1/2)Gbt + [2/3+2a (1+2 w'(U ,-um
+ (1+2a 2 )I 1 2 -v L2  (2-13d)
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(EI 1 - MLl 1 -0 (2-13e), (EI) 2 w2 " M L - 0 (2-13f),
* x-L x-L

(EI) 1w1" + MLl 1:0 (2-13g)t (EI)2w2" + ML2 1-o0 (2-13h),II o
(EA) 1u - T1  - 0 (2-131), (EA) 2 u2 ' - T2  0 (2-13j),

x:L x-L
(EA) u +T, 0 (2-13k), and (EA) 2u2 + T2  0 (2-131).

x-O x

The procedure of Miles and Reinhallfc] will be followed to reduce the

system of equations to sixth-order. First, the two bending equations are

added, then the two longitudinal equations are subtracted, respectively:

m 1 1+ m 2w2 + (E1lw1(4) + (EI)2 w2

-(1/2)Gbt 3 [2/3+2ct(l+ 1 )]w " + [-2/3+(+i 1 ) (1+'2 )+ 12 ]w2 "

+ (1+2oL) _I_

-(1/2)Gbt 3([-2/3+(l+ 1 ) (l+ 2)+t1 2]w " + [2/3+2 2 (1+a2 )]w2

+ (142ac ) (l_
t3

- P1 (x,t) + P2 jx,t) - P(x), andmu "m - (Au" + (EA)u
m1 1 - m2u2 1(EA) Iu 2 2

- (1/2)Gb ((l+2a11)w 1 + (l+2ct2)w2' + 2 (1 u21])

-(1/2)Gb (1l+2a 1 )W1 ' + (1+2a 2 )w 2 1+ 2Fj1 U2 )- 0.

Now allowing w, - w 2 , the equations reduce to:

D tw (4) _ Gbt 3 (1+a +Ct ) 2 w (2) _ Gb(1+a +Q 2 (u 11-U 2) P' (x) ,and (2-14a)

fju 1 -(l+a 1 +Ct2 )WI + fj(E)1 (E A) 2ub2 (2-14b)

P' (x)-P(x) - (mI + m 2) 2 ). The effect of longitudinal inertia is also neglec-

ted. Since the each cross-section must remain balanced in tension, (EA) Iu '-

-(EA) 2 u2  Using this relation and after substituting (2-14b) into (2-14a)

BBA-8



the former, the following equations are obtained:

(M) 2 (2)_D w -Gbt3 (+a1 +2 ) w -Gb(l+l +a2) 12 + 1)(EA)1u I P' (x),
-' (2-15a)

and

Dt w (4) - t3 (EA) 1 (1+a1 +c%2 )u1 (3) - P'(x). (2-15b)

The equations can be greatly simplified using twc scale factorsto,c]:

G- Gb (1 + 1 ,and Y- t 3 2 (EA) I(EA) 2 thus, (2-16)
t3  JA (EA) 2~ ~ (EA)1 + (EA)

w( 4 ) - G'Yw (2 ) - (Gt3 /Dt)(l+. +0&) U 1 ' - P' (x)/D t , and (2-17a)

w( 4 ) - [t 3(EA) I/D t (+1 +C 2)u (x)/D t ' (2-17b)

The final step is to eliminate u1 from the equations. This is accomplished

by taking the second partial with respect to "x" of the first equation and

multiplying the second equation by G', then subtracting:

w (S) - (I+Y)G' w (4) - 1 - G ,or

w() - (l+Y)G' w() + (m1+m2 ) -- 2 G'W "- 2 -G'P ] (2-18)//.

Dt Dt

The corresponding reduction in the bounddry conditions follows in the follow-

ing section.
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3.0 DBUMYRY CONDITIONS FO THE SIXTH-OWDER 51 EATIONS

The procedure for reducing combining the boundary conditions follows the

same prescription as above. After adding the shear terms together, the

boundary equations become (wi - w2 ) :

D w - Gbt 3 (l+c 2 + ) 2w' - Gb(l+L 1 +a2 )(u1 - U2' . VI - VRI + V2 and( 3 -)

t3 1 2 1 2 1 2) Ix-- -k V' (31
Dt w( 3 ) - Gbt3 (1+a 2+ ) 2w' - Gb(l+a +t )(u1 - u2) x - V L m -VLi - VL2. (3-2)

The following e-1ation is valid throughtout the beam and can be shown to be

equivalent to the extentional boundary conditions (after a lot of work):

u _(L+I + (EA) u" - (EA)2u L (3-3)

Since the procedure is identical for both equations, the derivation will pro-

ceed using only the first equation. After direct substitution of the exten-

tional terms, the boundary condition becomes:

w (3) - [t3 (l+ + )/Dt ](EA) 1u1" VDt (3-4)

Taking the second derivative of (3-1) yields:

w() - G'Yw 3  - [G't 3 (l+I+ 2 )/Dt](EA) 1u 1 0. (3-5)

Eliminating the uI from the preceeding equation:

-W( 5) + (l+Y)G' w ( 3  - (G'/D,) V. (3-6)
x-L

Thus, the set "natural" boundary conditions become[a,b]:

+ (+Y)G' w) - (G'/D ) V. (3-7a)
x-L

-W (5) + (1+Y)G' w (3) (G'/D,) VL' (3-7b)
Xtt

X-O

0 w"- M1 00 (3-7c), and D w" + M 1 - .
I .'X- -7
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Analogously, the moment boundaries are evaluated. Again, right hand

boundary alone will be evaluated, since the process for the left hand is

identical. Thus, the moment equation equation becomes:

Dew" - (M R + N2) - (T- T 2 ) t3 (l+cL+a2) 2 0. (3-10)
2

x-L

After substituting for T1 and T2, the resulting equation is:

Dtw" -M - (EA)U,' - (EA) 2u 2 ' ] t 3 (l+a +t 2 ) - 0 , or (3-11a)
2

x-L

since (EA) 1 u'- -(EA) 2u2' throughout the beam, the equation reduces to,

Dw" - M - (EA) 1 u [ t3 (1+a 2  J (- 0b)
Dt 1 1 1

'  x-L"(31b

Taking the second partial derivative with respect to "x" of (3-11a) yields:

Dtw(4) - - [ (EA) u 1 3) - (EA)2 u 2(3) 1 t 3 (+a 1+a2 ) - 0 . (3-12)

x-L

Substituting (3-3), this equation becomes:

Dtw(4) - Gbt3 (l+ct 1+a2 ) 2w" - Gb(l+t1 +a 2) (u1' - u 2') -0. (3-13)
x-L

This can be re-written as:

D tw -Gbt 3(+C1 +2 ) 2 W"Gb(1+a2 + 1 (EA) 1 'I -0. (3-14)

1 E )2) x-L

After applying the scale factors,

D tw (4) - G'Y w (2) - I G't 3 (1+ +a )/Dt I (EA)1 u' - 0. (3-15)

Eliminating u1 using (3-11b), the moment boundary condition reduces to:

M R - D [-w ( 4 ) + (I+G') w(2)1 1. (3-16)
GI ) x-L
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Thus, the set of "natural" boundary conditions become:

-w + (l+Y)G' w(3) - (G'/Dt) V, (3-17a)
x-L

-w (5) + (l+Y)G' w (3) - - (G'/Dt) VL? (3-17b)
x- 0

M -Dt -w(4) + (I+G') w(2))1, and (3-17c)

x-L

M- - D t 4 (1+G') w()(3-17d)

G )X-0

These force-type toundary conditions agree with those obtained by Mead

and Markus [a,b]. Only four "natural" boundary conditions now remain to

specify the sixth-order equation. Thus, it is necessary to specify two addi-

tion "kinematic" constraints; otherwise, the problem is not well-posed.

Representative "kinematic" constraints are:

clamped-free-

w-w '-0 or w -w 0, (3-18a)

simply supported-

w -w -0, (3-18b)
RL

simple-roller-

w -w L 0 or w '-w - 0, and (3-18c)
R L R L

no rotation-

w '-w '- 0. (3-18d)
L

Mead [a] discusses other exotic boundary conditions that are permutations of

the above "natural" and "kinematic" end conditions through relaxing the vari-

ous boundary tractions.

4.0 DISCUSSION/O8ERVITION

The equations of motion and associated boundary conditions for a three-

layer composite laminate were derived in Section 2.0 (Eqns. 2-12a thru

2-131). The "natural" oc force type boundary conditions are a consequence of

the energy method formulation [e,l]. That system of equations is of twelfth-
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order and the solution is completely specified by the "natural" boundary

conditions; thus, the equations of motion are well-posed. Consequently,

since the system solution is completely specified by its "natural" boundary

conditions, the formulation can be employed in the analysis of built-up

structures (eg. a finite element analysis), albeit cumbersome. The exist-

ence of all "natural" boundary conditions permits the universal satisfaction

of internal compatibility conditions required in a finite element type solu-

tion. Miles and Reinhall (c] proceed to perform an assumed modes solution to

examine the thickness deformations in a three-layer composite. Their studies

showed that thickness deformation is an important damping mechanism , espec-

ially in higher order modes.

The twelfth-order system was reduced to a single sixth-order pactial

differential equation (2-18), as shown in Section 2.0. By a similar process,

the "natural" boundary conditions are reduced to four in number (3-17a thru

3-17d). Both the boundary conditions and the sixth-order equations agree

with those derived by Mead [a,b].

The point to be observed here is that only four "natural" boundary condi-

tions remain to specify the solution of a sixth-order differential equations;

that is, a deficit of two differential equations. By constraining the

extentional degrees of freedom (3-3), two boundary conditions are lost.

Thus, two geometric or "kinematic" boundary conditions must be specified for

the solution to be well-posed. Several possible "kinematic" boundary condi-

tions are provided in Section 3.0 (3-18a thru 3-18d) to augment the "natural"

boundary conditions. Mead discusses other admissible boundary conditions [a,

bi.

Since the sixth-order partial differential equation cannot be completely

specified by the "natural" boundary conditions, a complex built-up structure

cannot be modelled. Only simple structures (eg. single span beamq and

plates) can be evaluated. For example, element -mpatibility conditions in a

finite element formulation cannot be universally satisfied without the impo-

sition of a "kinematic" constraint; thus, the type of structure evaluated is

limited, that is a general sixth-order beam or plate finite element cannot be
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formulated.

Further, Mead demonstrated that all solutions to the sixth-order equation

are complex-valued functions, with Lhe sole exception of the case with simply

supported boundaries. (The solution to the simply supported case is a real-

valued function. This case can be further reduced to the standard RKU equa-

tions [c, k].) Thus, computationally, the sixth-order equation is effective-

ly a twelfth-order system. No gain in computational effeciency is obtained.

The principal benefit derived from the sixth-order equation is when the

relative extentional motion of the face sheets becomes significant, that is

when one or both of the face sheets possess a low stiffness relative to the

core shear stiffness. In this case, Maynor [j] has shown that numerical

solution is neither particularly easy nor necessarily guaranteed. For the

majority of engineering applications, a fourth-order (RKU) formulation is

adequate to describe the dynamic behavior of damped laminate beams and plates

[j).

5.0 SMMU&Y

The author has presented a detailed derivation of the sixth-order beam

equation and attendant boundary conditions. The author has shown how these

boundary conditions naturally arise as a consequence of the variational

energy method approach. The author shows how the boundary conditions vanish

as a result of constraining the extentional motion of the face sheets, there-

by requiring the imposition of "kinematic" constraints for a well-posed solu-

tion. These additional restraints restrict the types of structures which can

be evaluated using the sixth-order equation. A useful modification to these

boundary conditions is the inclusion of damping into the boundary conditions

(m]. Inman has observed that such terms in the boundary conditions are

important in the mechanics of line-of-sight/slewing or pointing/control

applications of art ic'ulatinq structures.
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'The Effect of Compliant Layering on Damped Beams

David John Barrett
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ABSTRACT

This paper reports the results of an analytical investigation into the
effects of compliant layering on damped beams. The beams consist of
laminated face sheets sandwiching a single damping layer. Compliant
layering is introduced into this construction by making the extensional
modulus of the inner layers of the face sheets substantially less than that
of the outer layers. The analytical model, that is used to determine the
mechanical response of this type of structure, is based upon a generali-
zation of constrained layer theory. The analysis predicts that compliant
layering can be used to reduce the forced response and improve thc
rood"l damping.
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1.(0 INTRODUCTION

I )apingtreatmnrts for bending components typ., ally consist of adJa ccmt layers
of stiffness and damping materials. In these components the damping layers are
saindwiched by thle stiffness layers so that, when the stiffness layers deform Linder
tranisversc load s, their bending will shear the damping layers. Because of their viscos-
I . if (Il damiping laycrs convert part of the strain energy of shearing irno heat and
therehy provide a mecans for issipating the energies of shock and vibration 1l, 21.

Any design approach that increases the rate or amount of shearing in thc damping
laIyer.s has the potential of improving the structural damping. Compliant layering,
wich in) a layered design is the direct substitution of compliant material for stiffness
material, offers such a possibility. The stiffness layers of conventional damping treat-
ments consist of either monolithic isotropic, laminated quasi-isotropic or laminated ui-
dliietional materials. 'rhii diesign practice results in in-plane moduli that are essen-
til l co)nstaint over the depth of the strffnt-., lay-r In tho~ce 4di6rac

WMJreie thal part of thle stiffness material that is adjacent to the damping layer
it lh imit 11 i al, 01' leSerI mo1dulus. Thc in-plane modulus would no longer be constant

o\c 11th sffc s Liy'cr mnd thle in-plane extensional stiffness would be reduced. The
h ~p ~ K~i) hoe examinecd In th is paper is that, under cyclic vibramiun, the use of com-

plianti Layers to reduce the in-plane extensional stiffness of damped treatments allows
the stiffness layers onl either side of the damping layer to undergo greater in-plane
tranislaions. This increases tue rate of core shearing and thereby leads to higher levels
of ener-gy dissipation,

Inl a previous wkork [3, 41 a lamination theory %was formulated that ppca!tl
aI general class of damped bending structures, including StniCtUres with compliant
llaverin1'. The lam11natilon theory was used to examine the effects of stress coupling,
Ian nat ii linl and comlphlnf layering on damped plates. Here thle original analytical
theolry Is reduced !t) aIpplication to damped beams. Relevant parts of the previouIs
anaol ica rcstilt,, are retieated and expanded here for the study of compliant layering inl

O OUTINE OF THE FORMU LA11ON

'Ihei analytica Tnde is i damped be m consisting of top and bottom face sheets
s'indwiching a1 single damiping la-lr (see Figure i). The face sheets are 1iavered with a

totail (if' N' Laers In t! C top face sheet and NR layers in the bottom face sheet. The

(hiieknesses of' the individual layers are designated by t$ fohIo aer.' o h
hoi ot n layers and 1)fo the darnp~ng ~~ye.(Here the subscript n1 identifies individual

it ;c.ssaers i Kc the ouper",cripts T (top), D) (damping), and 11 (bottom) refer to
N~Y'ifL ar!~ o h satir~;. The global coordinate system shown in :I gure I and

!;cd Inl thC development cons!"sts of th1C axial coordinate x, whirch is iocated in, thle
111d uI,i oc.(f thef &IInnp ing laiyer (the rcference surface), and the trafisverse coordinict



o' analytically model this structure the following assumptions are made:

I. The in-plane deformations of the face sheets vary linearly through the face sheet
thickness;

2. The in-plane deformations of the damping layer vary linearly through it's thick-
ness;

3. The in-plane displacement fields are continuous across the interfaces (perfect
bonding);

4. The transverse displacement is the same for all parts of the cross section.

5. The moduli of all of the materials of construction can be treated by the Complex
Modulus model;

6i. The material model for the stiffness layers is transversely isotropic but neglects
the thickness normal stresses. The axis of isotropy is parallel to the mid-surface;

7 "h; .-. i Vk! d " 'amping layer is isotropic but neglects all of the nor
rial stresses.

Using assumptions I through 4, the motion of the structure can be expressed in
terms of five displacement degrees of freedom (see Figure 2). These degrees of free-
dom are the reference surface displacements (u o and u3), the rotation of the damping
layer about the reference surface (or°), and the rotations of the top and bottom face
sheets (Cx[ and ar). The degrees of freedom of this structural model are therefore a
generalization of those found in constrained layer theory in that the top and bottom
face sheets are allowed to rotate independently.

The displacements in terms of the degrees of freedom are

Top Face Sheet

It I 0 , ) + I 1 + (X D- 1 ' )

)amping Layer

Ut =u 17 t (X1, T)+a (x I1 , T) (2)

Bottom Face Sheet

It I = it 1' (x 1,1:) - I t t(x 1,1)+ (x3 +-ItD) )(1, T) (3)

22

Complete Construction

14 3 = It I x 2, T) (4)

where the symbol x is used to refer to the time variable. From these assumed dk,
placements, the strain fields are computed using the strain-displacement equations. The
stress fields are then found by applying the constitutive laws,

The equations of motion for the damped beam structure are derived using
lamilton's Principle in conjunction with Reis.-_-,, Variuiionai -iheorem. Since

!.,,nipic is only applicable to conservative systems, the material properties
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arc Iitialfly treated as hking purely elastic without( dny damtpfig. The energy integrals,
t11C Incgraiids Of' which are formied from the Wiel variables, are then mii:.iiized For
this provisional, fully elastic system. The stress resultants are included by performlig
thle thickness integrat.ion Of these integrals. Taking the variation of the integrals with

rsct,~c to the generalied displacements and forces and -setting the coefficients of like
variations to zero y ields the governing system of differecntia! equatiow'. The.,sc cqua-

Iaw a i nl ndc thle force displacement relations, the boundary conditions wid thle Follow-

!"" P)j f Af) 11).. + 1 61 +' o+~

l ~ a ~ t 2 1t (7)

1 1 16i)t+1c 1 -:= ~9)
ill \\ 1il~ the 1' I 1 / ! w v n~ I)' ar 1hefce sheet a!nd damping lavyer

tome.11 lloml ('1 unnmi tn smlt'mnt\, thle P, !re the applied tractiofns and thle N41, I', ec.

At this pointt 01he fot~ -d LI Isp la~ce tie nt relations arm substituted into the equations of'
notion. [ his N !kclds aI seCt Of five displacement-equilibrium equations the unknowns of'

hAich1 arc thle tivc funlctional displacement degrees of freedom. Solutions to Specific

problems irt: founld by atnplying the appropriate set of boundary conditions and solving
0WIC eqn lions. In wA maix notation these equations take the formt~

hwc~ Ill 1 theC aw trix, 11)1 iN a differential operator matrix, li 1 1,, a vector (fl
wiiaw tmpacwict ions aind IF 1 is a loatd vector.

c I "Iool i obtaine),d, damlping canl be Introduced -- Invoking theC

am I ll Iplc il kh l thle elastic moduli are replaced by thie complex
mwoela1ic modl'l the01 Complex MVxlulus model. Application (I the damped bewaml

a, ll herel'ore imnwted t0 stcaid% tate harmionic vibrations.

S()IJ'WT1()- HIk ~Iiz I i IPPORTIEL BEAMS

on iIc ;IA :l11 eiIn the -t direction, On- the ti ( and t a edl Les,

hca~~im7\~;n~tel.For the-se !ord: '~ 1 in he [ourier seres

Kj!h he ytipi;t t, -O~' s :qino 10 uing [t tcilow Ing! seS expansionIs tol

,,, ic2)



OD = -. M /  mKlV ~
( AnDcos(- ) ei t (13)

( = I (U A' COS( e
in a(D EA Bcos(-) e'm  (1,5)

m=1 a

In these equations the superscripted constants are Fourier coefficients and 16 is the fre-
quency of the steady state excitation.

The harmonically varying excitations (with respect to time) are also expressed in
terms of Fourier series expansions

,, mitx 1  .

P I(X1,T)= XP Tcos(- )e (16)
,n-l a

where the P7n are the !ourier coefficients determined from the |'ouricr fornulacs.

Substituting the above expansions into equation (10) rcsuIts in an infinite nnmim
of uncouplcd equations that can be grouped into sets by common indicial values. Thus
a set of five equations and five unknowns is obtained for each indicial value where the
tnknowns of these equations are the Fourier coefficients of the displacement series.
Expressing these equations in matrix form leads to the following general expression for
each indicial value

-f21M I Ur I + IBm I in I =IP (i)

where I Un is a vector of Fourier displacement coefficients, IBn I is a modal stiffness
matrix whose elements are determined by the material and geometric properties of the
structure, and J/ I is a vector of the Fourier loading coefficients.

The analysis can be completed in several w',ys depending upon the type of info
niation desired. For instance, the dynamic response of a damped beam to a spccilic
excitanon can be found through the direct solution of equation (18). If however, the
modal loss factors are to he determined then the Forced Mode Method 151 is applied.

4.0 APPLICATIONS

4.1 STRUCTURAL DESCRIPTION

The beam examined in this analytical study has a length of 25.4 cm. The top .1u,(
botton, fCw"e ,heets of !e bez-am consist of 6 stiffness layers with each layer having a
thickness of 0.1725 mn. The damping layer has a thickness of .0965 rum Th,

ii........................f IN1/35)1-6 :arbon-epoxy witim a iber volume fraction of
60%. The properties of this material are shown in Table I where the disparity in the
axial and transverse Lxtensional moduli should be noted. The damping layer consists
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ol' I1l) 112 Scotchdamp SJ2015x. The frequency dependence of the stonge and loss
tmoduli of this material are accounted for in the analysis. The mass de,:.';ty of the
damping material is .98 gm/cc.

To study the effects of compliant layering on structural damping, the fiber rein-
forced layers adjacent to the dmtniping layer are given a 90 degree off-ax.s orientation
with respect to the xl coordinate direction. The off-axis orientation of the inner layers
makes these layer,' compliant with respect to the x, coordinate direction. Therefore this
patrticular type of lamination serves as a compliant layer design.

the notation used to specify the structural arrangement of the damped beams is
identical to that used for laminations of advanced composites except for the addition of
the symbol d which will indicate the presence of a damping layer. For instance, the

as..line structure for h ,,; so called because it does not includ0e compliant layer-
ing cefcts, is designated (fid /0f.

4.2 NUMERICAL RF.SULTS

igure 3 shows tile loss factors of four different damped leam, for the iirst five
lending modes of vibration (Figures 3 to 6 repeat results that can be found in Refer-
cuc,, 3 and 4). I Icre it is seen that there is little or no gain in damping for the funda-
iwt't l mode but that in the higher modes the compliant layered laminates have

siutiliicaiily greater ios, factors. (The matching of natural frequencies of the beams
inlicatcs that the gain in damping is not due to changing material properties.)

'lgc goal of a damping design is to reduce resonant stresses and displacements.
This is achieved by increasing the structural loss factor which in a compliant layer
design is accomplished by sacrificing static stiffness (i.e, through the use of 90 degree
laycr orientations). It is necessary then to verify that the s:uctural response actually
decrascs in the highly damped but more flexible compliant layer designs. To analyti-
cally test the response, the structures are subjected to forcing functions that approxi'
nlatcly excite the resonant response (the approximation is introduced by not accounting
for the negligible monuct and in-plane components of the load vector that are ,quired
hw the Itorced Mode metiod for a strict proportionality to the inertia loading). Figure 4
sho N\ the result of this computation where the amplitude of the transverse displace
nienls have becn nornulized with respect to the modal response o! the b:jseline beam.
Except for the fundmentai mode where virtually no improvemeilt i. achieved, the
analysis predicts reduced resonant responses. (The failure of omplaint layering to aid
in controlling the response of the fundamental mode is attributed to the dimensions of
the particular configuration being examined)

The ,oiitro:'tng l"arametcr In increasing the damping in the compliant layered
de,,igns is thc extersonal moduus of the compliant layers. This is seen in Figure 5

licrc the modulus of the inner layers is varied parametrically as a percentage of the
modulus of the outer layers. The loss fiactor directly increases with decreasing
1u1) 011 ns. "lb n J:s,; controls the phase lag between the danping liyer rotatiott
f~la) :n1d the other di pi.wcnt degrees of freedom ,,hich rspond approximately
in ph,le .i ctre 6 shows thbt tHis pha:e lag increases with decreasing modulus.



To test the hypot,.,is ih.!t complaint layering leads to higher energy dissipation
through greater in-plane translations of t ¢ face shcc:s, th f:lh: wiig ratios are formcd

R )= 1. (19)

R1= l3 (20)
1 U 30 Baseline

in which the subscript i is used to refer to a particular design and the vertical bars
indicate the amplitude of the listed degree of freedom. The ratio R!' is a measure of
the amount of core rotation (shearing) that occurs per transverse displacement. The
ratio Ri is a relative measure of the resonant response. For the first four modes of
response Table 2 shows these ratios and the corresponding loss factors for the baselilc
beam and three compliant layer designs. In each mode it is seen that the design that
leads to the highest R! also has the lowest resonant response and the highest loss fac-
tor. This indicates that compliant layering affects the response by increasing the rate of
core shearing.

it can be argued that the relationship between the material properties, the struc-
tural configuration and the dynamic response is very complex and that the benefits in
mechanical behavior obtained in the compliant layer design can be attributed to reach-
ing an optimum balance of conventional design parameters rather than to the compliant
layering. Since in the previous analysis the thicknesses of the stiffness and damping
lIyers were restricted to commercially available sizes this may very well be the case.
1o ,'xmnine this issue an additional analytical test is performed. For an excitation that
excites specilic mnodes of response, fix the thicknesses of the face sheets and vary the
thickness of the damping layer until the response is minimized The result is an optiu
izcd damping design for that specific excitation using conventional design practice. At
this point compliant laycring is introduced to see if a further reduction in response can
be achieved. Table 3 shows the results of such an analysis for each of the t.r;,t four
modes of response. In each mode the compliant layering design yields an improvement
over the optimized conventional design. Figures 7 and 8, which show this information
plotted against the resonant frequency, indicate that the improvements are not due to
changes in the amplitude of the forcing function or to changes in the frequency depen-
dent material properties.

5.0 CONCLUSIONS

In order to cxamine the use of compliant layering in damped structures a struc-
tural theory was developed and applied to a simple but representative structural sys
tem. The analytical study revealed that compliant layering can increase the cfficienc,
(I damping designs by increasing the modal damping and reducing the forced
rcsponse. The work presented here supports the following conclusions that wcrc vi
Musly reported in References 3 and 4.

Compliant layering, which is the replacement of face shect material with a lcss
f material at the interface of the face sheets and the damping layer, affects the
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dvimiiC reCspon1se Of' Ohc beamn through the alteration of in-plane extensional stiffniess
proper-ties. This creates a itcchanism for increasing the rate of shearing in ;:edamping
imaterial by Increasing the relative in-plane displacements of, the face sheets. The raie
ol' .\heair jg and the associated energy dissipation were. found to increase as the

nul ir1s of, the Coipl itru layer was reduced. However, there is a limitation to th i pro-
ce~NMc thle Moduli Of' thle compliant layer Must he high enIough 1o coniI OI th shr

delorruation to the dlamping layer.

Comrrpliant layering can also be used to reduce thle weight of dampCA s. ructure,
sN11Ce compliant materials are generally less massive than stiff materials. For insiun':,e,
metaillic face sheets that in1corporate a glass-epoxy compliant layer can have improved
d~nanlc resistance at a reduction in weight. This same effect can be achieved by
meriely remnoving some of the material on the inner side of the face sheets through
gloo\ ig, waffling or scoring this surface.

( Xiirpliart layering Introduces challenges to the fabrication Process sinice Il

in olv~cs, ci rhcr th: imating of' dissimilar niateriak~ 161 or the unbalanci ng Of (fUZ si -

\nOpi lminte Awthere will be additional steps III the laminate f-abr1'ition
II, h] %kriill addf~ to theC co ) f building these components. Nevertheless, depending uponl

OIr 1W.1 aCO.St 0! coIntruct1i, :omnpliant layerinrg offers an iniportan design opt ion InI
tIIIe 1"C ofI damlped bending strtuctures.
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Axial Extensional Modulus 148. GPa

T1rnsverse Extensional ModuILuS 8.96 GPa

Axial Poisson's Ratio .35

Axial Shear Modulus 4.48 GPa

T'rans verse Shear Modulus 2.07 G Pa

Axiaul L oss Factor .(X) 128

TIransvcrse L oss F actor .()110

S 'icm- Loss Factor .0M(

MA~SS Dclnsity 1.52 gnVcc

luhiihc I N'atcrial P~roperties of 1M6/3501 -6 ('arbon1-E"poxy



Beam Structure mode I Mode 2

i)cign i lay-U.Jp Speciications ! R RR,

, ( B( hlne) 1.X I W 6 '0 IIX) I ( ,

2 ()5/9O/d / s/ 1.04 0.94 .28 I.08 )., h

(),19( 2/d/9()2/0.l 1.02 0.98 .26 1. 10 0. .40

1 9 /90 ( 0.92 1i 1I_ .21 I.06 0.92 17

teml Structure Mode 3 Molc 4

I)c.oig Lay-Up Specifications R,) / R RR R)I R R, 1,

I ()/dt(06 (1,a line ) 1 ) 1(X) .14 1.XI) 1.(HX ()

2 ( ) S / 9 ) O / d /tA )/ ( ) 1 .1 I 0 .8 5 .4 1 1 .1 2 0 .8 1 1 :

(0,Ii 211( ) 1.17 0.79 .48 1.21 0.71 .S'

1/9 ( l/i))vd /90) Af) 1 I.10 .79) .4b 1.24 0).70 .

ofls t. the Rate ol' Core Rotation RI)  . . .

I U

l.'i'tiru of the Relative ResIonant Response R, -

I1w \1,dII Structural l, ss Factor TJS

'kil, 2 ('Corc R,,,i on per Transcrse lllcction tor Four I)amping I)c,,igns

0.L~i5- l



N!h Ic )sl ) 1 1 1 j t .L D___Displacement (2)mm 1m mmran_

I 11 .(XX) 1.035 .185 .36 I.(X)

C .31() .725 .185 .42 .96

2 I .(X) . 5 .085 .32 .X)

( .29(0 .745 .085 .37 7

I I .(XX, 1.035 .050 .29 1.00

C .270 765 .050 .34 .88

(X) 1.035 .035 .28 .0

( .290 .745 035 .33 .87

he iotud thickness of the layers with a 90 degree oriertation (Compliant Layer).

I hc l otl thickness o[ the layers with a 0 degree orientation.

i t l hickncss ol ihec viscoelastic layer.

sn,<, l ul (k N:1 d igll,

It ()ptirnie(1 design Uing conventional design practice.

C -Optimiied design using compliart layering.

I 1L. npltiudc o the transverse displacement is :normalized with respect to the
rc,,qmc hunnd IN he conventional design.

'lthle 3 ()punmied Designs
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The Damping Property of Laminated Damping Steel Sheet after Deep Drawing

Abstract

The damping property of laminated damping steel sheet is affected by shear

deformation of viscoelastic layer, a constraint produced by the mutual slip

between two steel sheets under a bending vibration mode. So, the bonding of the

viscoelastic layer to steel sheets is critical to the damping property.

Sometimes, laminated damping steel sheet becomes unbonded locally from the

viscoelastic layer because of an excessive relative slip between two steel

sheets caused by a deep drawing.

It was found that by using the transmittance of ultrasonic wave, the

urhonded area of laminated damping steel sheet can be detected without cutting

it oft. The validity of this method was confirmed by the T-Peel test which

was conducted after the sheet was cut off.

The damping property measured at the we!! (f a deep drawn oil pan, was

compared with a one for a laminated damping steel sheet not drawn yet.

It was found that the damping property and the noise reduction effect of

a sheet after deep drawing were reduced in reverse proportion to the widening

unbonded area.

1 Introduction

Steel sheet 1),loels used for main components of a structure induce, in many

cases, vibrations of bending modes and become a source of big noises.

The laminated damping steel sheet is incorporated not only with a normal

function of steel sheet hut also with a damping characteristic and, therefore,

a substantial degree of reduction in vibration and noise can be achieved when

it replaces an original steel sheet. This is an attractive feature from the

design point of view since a basic structure of design can be retained as it is

without making riv modifications or alterations. The range of application for

tht, mAtvi ial of thi:s typp has been expanded iemarkably after an appl icat ion to

, (ilePp d I awn :(rmpnie it paI t was made f,'as i) I e by ,r eat improvement s ach ieved i n

the sheet formab llty.

There are many c:overs attached to the exterior of reciprocating engines used

l3LU-2



in the motor vehicles. They are the major sources of noises and, in particular,

an oil pan has been known as being one of the big noise sources.

An example of noise contribution ratio of various eniline components is shown

in Fig. 1. A press formed steel sneet oil pans are generally used by the

Japanese motor industries. Since a press die usorl for forming an oil pan of

original steel sheet can be used without supplementing a major modification and

also assisted by improvements achieved in the formability as mentioned above,

the use of laminated damping steel sheet for the oil pan production was spread

quite rapidly.

Stimulated by such application in massproduction system of the motor

industries, applications by other industries were commenced and grew in a short

period of time. The consumption of such materials, therefore, has grown in an

amazing speed in Japan for the last few years.

The laminated damping steel sheet, however, has problems still to be solved.

They are weldability, formability, bolt loosening, loss of bending stiffness,

ctc. Those problems can be solved not only by the improvement in steel sheets

and damping films but also by the special design considerations given to a

portion of structure where such a material is used. In order to acquire

satisfactory solutions to such problems, it is essential to get a full

knowledge of the nature of problem.

In this paper, a consideration will be given to the effect of deep drawing

to the damping characteristic of the sheet. This is a critical problem as it is

closely associated with a loss of fundamental mechanism of the damping effect.

An oil pan is typically a deep drawn component part and can be a good example

representing an involvement with this problem. It was quite incidental that the

first full scale use of this material in Japan was directly involved with one

of the most difficult problems.

2 Shear Deformation of Damping Layer

When a bending deformation is brought to a laminated damping steel shet in

a press operation, the deformations as shown in Fig. 2 takes place in the

damping layer due to the tensile or compression deformation similar tn thi, onp.s

given to two steel sheet and the shear deformation caused by the muitual -.lip

appeared between those twe sheets.

The damping layer is a flim of high polymer resin arid, therefore, is ahli to

withstand substantially layer deformation than steel sheets. The tensile and

compression deformations on high polymer resin are in the same magnitude aS

those on surrounding steel sheets and will not create any problem!; by
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themselves, howver , since the shear deformation of damping layer is formed by

,i force generated by the mutual slip two of steel sheets and the magnitude is

considerably larger, it is sometimes brought into a zone where some probleins

may start to appear.

As obvious in Fig. 3, damping layer's shear curve has a linear elasticity

zone and a plastic deformation zone even though they are not defined as

distinctively as a metal. The curve goes through the maximum shear stress point

and is terminated by a rupture of layer, that is, a separation. " Maximum slip

5,. prevailing in such an instance will be in a magnitude inherent to the

material and proportional to the thickness of damping layer.

Fig. 4 shows the distribution of mutual slip appeared between two steel

sheets of laminated damping steel sheet when it was bent to most fundamental

V form by a press. Slits were provided on the side of rectangular piece of

laminated damping steel sheet and the rate of slippage between two steel sheets

was measured after the piece was bent by a press. Obviously in the figure, the

slip becomes largest in the border zone between circular arc and flat flange

areas.

Fig. 5 shows the distribution of mutual slip between two steel sheets when a

test strip piece is drawn into a channel form. " The cross section of the

piece is resembled to that of an oil pan. Since the flange zone C-D was held

firmly to prevent wrinkling during the formation and the bottom line A-B has a

symmetry against the center line which passes through point A, the mutual slips

between two steel sheets in those two zones are virtually nil. A large mutual

slip appear on the side portion B-C, a portion located between the said two

portions, simply because of the right angle bendings provided at both ends of

this portion. The magnitude of mutual slip movement varies extensively and

complexly while the piece is formed in a press. Details of mechanism,

therefore, have nut been clarified yet.

When a laminated damping steel sheet is used for an oil pan having a cross

section in a form as shown in Fig.5, therefore, the damping K'yer in the side

wall will be subjected to a large shear deformation. Fig. 5 (b) shows that as a

die corner radius is increased, the maximum mutual slip becomes smaller. This

shows that a shear deformation of damping layer can be reduced by a

modification of pressing die. However it results in restr icting die radius Rd

necessary for securing the width of flat range portion.

As shown in I ig. 6, the damping effect demonstrated by the laminated dampinrg

stel sheet in herldlng vibration mode is brought forth by the shear deformat ion

of high polymer resin layer sandwitched between two st,3l sheets. Under such

ircumstance, therefore, if an excessive shear deformat on is loaded on a
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damping layer by a press operation and the layer is seperated from the steel

sheet, the basic function of the damping layer is lost.

3 Ultrasonic 1tansmittance Measurement of Adhesion of [amping layer

rhe measurement of adhesion of damping layer by an ultrasonic tran)smnittance

method is shown in Fig. 7. Since the condition of adhesion can be checked by

this method without destroying a product, it becomes much easier to check for a

damage of damping layer caused by a press operation as shown in the above the

method can also be applied to an evaluation of laminated damping steel sheet in

the development stage as well as to an conditioning made in a production line.

The gain of ultrasonic transmittance indication should be adjusted to )a full

scale '10' on a sheet having a good adhesion before it is formed by af press

machine. The evaluation criteria for a good adhesion should be scalt, 8 or

above, no good adhesion scale 2 or below and uncertain and unreliable adhesion

scale between 2 to 8.

Those criteria are compared with T-Peel strength in fig. 8 (2). Though they

do not match perfectly, the correlation between two systems verifie% the

sufficient practicability of such evaluation.

Fig. 9 shows the result of ultrasonic transmittance test Performed by the

method shown in Fig. 7 on the adhesion of damping layer of an engine oil pan as

an example of laminated damping steel sheet with a major press formation. It

indicates that separations of damping layer took place locally. The evaliation

was verified by a T-Peel strength test which was performed later or the same

specimen. The result, meanwhile, indicates that an application in a deep (fraw n

oil pan gives a laminated damping steel sheet a very harsh processing.

Shear deformation caused on the damping layer is large on the side wall ,as

shown in Fig. 5 and, therefore, this area is more susceptible to an incomplete

adhesion which means separation. The possibility of separation is reduced on

the right wall because of a local protrusion provided on it. Some separation

is noted on the bottom surface due to nonsymmetry of the left and the right as

well as the front and the rear walls. It is a very complicated phenomenon.

Fig. 10 shows the result of vibration test performed on pieces of laminated

damping steel sheet derived from the side and the bottom walls of oil pa' as

shown in Fig. 9. It is indicated that the piece retain good damping: property

from the bottom wall and no good one from the side wall. The eva lu, or,

meanwhile, obtained by the ultrasonic transmittance test was found no good on

the side wall and good for the bottom. So, reduction of dampingv char acter is ic

due to partial separations of damping layer can be see in the taplh.
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4 Structure Damping in Complex Structure and 77 Value

Required for Damping Treatment

Fig.11 shows an example of structure damping mea-ured on a reciprocating

engine. The basic structure of an engine is constituted by cast iron cy inder

block, cylinder head, etc. and 71 value of those component materials Is

approximately 0.001. According to Fig.11. 77 value for engine structure is

between 0.01 and 0.04, about 10 times as large a 77 of materials.

This is due to the structure damping, a combination of friction damping

produced by each bolt joint face, etc. and oil damping produced by an orI f i lm

formed on the bear mngs of various rotating shafts. Larger 77 values, shown

there while the engine is in j runniig conrition, are realized by the damping

effect of oil films formed on the bearings by the rotation of shafts.

for the purpose of an accomplishment of damping treatment for the reduction

of vibrition and noise on a very complicated structure as engine, a target 77

to be set is recommended to be larger than 0.1 by the past experiences because

the effect of original structure damping is quite large.

h 7 Value of Pressed Laminated Damping Steel Sheet Component and its Effect

Fig.12 shows the cantilever beam measurement method of loss factor 77 for a

laminated damping steel sheet. A steel spacer is inserted between two steel

sheets in lieu of a damping resin laver in the portion where the beam is fixed

it) the clampiny, block to accommodate an adaptability to boundary condition.

,1 of laminated damping steel soeet measured by the method shown in Fig. 12

before it is f,).med by a press is shown in Fig.13. Nomogram and shift factor

calculated by the data in Fig.13 are shown in Fig.14. Fig.15 snow:; the

temperature and f'eQuency characteristic of viscoelastic rnate ial itself.

fn consideration of the structure damping in a bolted condition, the method

of 71 measurement, on art oil pan made of laminated damping steel sheet rind

instal led on at, erigine_ Is shown in F i g. 16. The te rn)rotu' . of uli in the ,

pat i s const rit I regulated to a certa ' eve, ecrijse the damping

characteristic of laminated damping steel sheet is greatly infitenced by the

temperoture. i g. I1 'Ihows the result of test n it g. 16.

The solid i n in I n y.17 s the damping character st, c ver i~ d fr in the

11ii I atI on o? v 'a I Vs 1 c dat a show n I 1 5. Ihe i I a ::a i I e,', U Wfi h

t ,,, tt , th l ri e fIs the laminated damping steep i ,,t h0 t Li t:es he by a

pi es:, tbvioot. v ( ear ,f mutuai sli o if stee! sheet,, it j , e ted Ito t fie

'Ime v Ir t I i r!11 , i,( shee t , , , I! F. th mper !t i:r vi, wh i delivers the



maximum 71 value at around 70 'C, a temperature at which an oilI d . isual ly

kept while an engine is in operation. It has 7) value exceeding 0.1 in a wider

range.

In comparison to this solid line, there is a substnt ial edoct mo ot 71

value on a laminated damping steel sheet after it is formed into aM oil pan. As

shown in Fig. 9, separation of damping layer takes place more oft en on the IItt

side wall of oil pan. For this reason, the reduction of 71 on the left %ide

wall becomes larger to an extent that it goes under 0.1, the value which is put

up as the target for 77 by the past experiences. )

Fig. 18 shows the effect of laminated damping steel sheet realized on sound

power level at various points on an outer surface of oil pan while an engine is

in operation. It is noted that a close correlation exists between this effect

and the adhesio" of damping layer shown in Fig.9 as well as 71 value shown in

Fig. 17.

Fig. 19 shows sound pressur. measured on the left side wall and the bottom of

oil oan. The plots show that a noise reduction ranging from I to 2 d13(A) was

accomplished on the left side wall and 2 to 3 dB(A) on the bottom. Both

indicate that substant ial damping was accompl ishod. Fven thoug.,h an acCui ate

comparison was not made in this case, 60 % to 80 % sound power of the o I pan

is normally supplied by the resonant peak of an outer panel which yields to a

damping effectively. And, therefore, if a large 71 value is made ava lable,

much larger noise reduction will become feasible.c",

6 Summary

From the above, it can be said that a laminated damping steel sheet before

it undergoes a press forming operation will have a sub-tant ially large 71 vilne

than those of general structured components but if a separation of damping

layer from steel sheets are caused by the bending openat ion of press, there

could be a large reduction of 71 value to an extent that sometimes it goes

under the expected value though all the damping effect is nc' necessarily lost.

For the compensation of such reduction, an increase of maximum permissible

mutual slI .5 8 ,, of damping layer by material improvement, review of press

operation conditions, increase of layer thickness, etc. are being stuijlied,

however, a modification in pressed form where the mutual lip can furtht - be

restrained should be explored, too. Increasing the thirkre.,,, of dampirig layer

is relatively simple method but it may create new problems in bolt loosening, or

otess formability of steel sheet and, therefore, its appl cat ion is rather

in ited

Ib'-7



Under the circumstances, diversified studies in applied engineerings in the

fields of materials, production engineering, designs, etc. as mentioned above

should be carried out for an accomplishment of noise reduction in a dep- itawn

product such as an engine oil pan as it was discussed in this paper.
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PRACTICAL DESIGN AND ANALYSIS OF SYSTEMS WITH FRACTIONAL
DERIVATIVE MATERIALS AND ACTIVE CONTROLS

Daniel R. Morgenthaler *
Martin Marietta Astronautics Group

Denver, CO

ABSTRACT

The fractional derivative model of viscoelasticity is considered to be the most
exact representation of viscoelastic material behavior, as it is based on the molecular
theory of polymers. The classical fractional derivative expanded equations of motion,
however, result in extremely large eigenproblems which are intractable for typical
damped structural systems.

This paper discusses a procedure and numerical algorithms which can be used
in the design and analysis of structures incorporating viscoelastic materials. Modal
strain energy methods are used during the preliminary design phases, permitting
inexpensive design iterations and structural modifications. After a satisfactory design
is achieved, the solution to the problem is then generated using the frequency-
dependent complex impedance matrix implied by the fractional derivative model. The
eigensolution is generated using an accelerated complex subspace iteration
procedure with spectral shifting. This technique provides the accurate solution to the
fractional derivative eigenproblem with minimal computational requirements. When
the complex open-loop modes are placed in an appropriate state-space form, active
controls can then be directly applied to the reduced-order model.

The application of the method to an example problem with many degrees of
freedom demonstrates that the method provides accurate closed-loop results, and can
be implemented inexpensively on large-scale structural systems. Most importantly, the
results show that the technique will be required for the application of sophisticated
modern control algorithms to damped systems, and that the use of the modal strain
energy technique to generate the open-loop system model for use in closed-loop
analyses can provide results which are significantly in error.

• Mail Stop H4330

P. 0. Box 179
Denver, CO 80201
(303)-971-9387
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1.0 Introduction

Vibration contro through the combined use of passive ana active means has
become an accepted meinod of performance enhancement for space systems witi
requirements for dr'ensonai precision and stability. The Passive and Active Contrci
of Space Structures (PACOSS) Program has sliown that very accurate models cf
damped or undamped struct res are required for successful implementation cf
modern control strategies. The Modal Strain Energy (MSE' method is a well knowi
analytic method of approximating the behavior of damped systems with viscoelastil
damping tidatments, and this mnethod serves as an outstanding tool for the design of
complex structural systems with damping. As the MSE method is an approxtmation of
the behavior of the damped cystem, the results of analyses using the MSE solutioi
must be used cautiously.

The representation of the behavior of viscoelastic materials is most accuratel/
described using fractional derivative models [1-5]. These models have their origin i-I
the molecular behavior of polymers, and have been shown to accurately describe th:3
behavior of many materials which lose energy in cyclic vibration. However, th.3
fractional derivative representation of material behavior in tne modeling of large-scal3
structural systems has generally been disregarded, due to the absence ot numerical
procedures which solve the equations of motion in an efficient manner.

This paper discusses a procedure which has been developed to efficiently
design and analyze structural systems with materials which can be described b'
fractional derivative miodels, and provides an accurate reduced-order state-space forr 1
which can be used to design nigh-authority modern control systems and predict
system performance This method relies on an iterative solution of the differential
equations of motion in the Laplace domain, which is termed spectral iteration. This
method is used in conjunction with the subspace iteration eigensoll "ion procedure to
develop an efficient numerical algorithm for the solution of large fractional dervativq
eigenproblems typical of those which may be encountered in realistic structural
applications.

The MSE method is the first step in this itertive process. Therefore, the new
technique can be u-corporated into an efficient design and analysis methodology
which uses the MSE approximation during preliminary design stages, and improves
the accuracy of the analysis as the design matures.

Through a sufficiently complex example problem, the new ,.,Jchnique is showI
to provide a system m~re..sertion which may be used in t,"e design of high-authority
control systems, and to predict the closed-loop performance of passive/active system,.
The number of the degrees of freedom of the example problem is large enough t
demonstrate that the prccedure can be used for the solution of realistic problems with
viscoelastic dampng treatments. It is also shown, however, That control designs whic-i
are generated based c);, a ,M' plant model and exercised ,.)- the fractional derivativ
plant may have performance which is seiously degraded whi-.- , compared witi
analytic predictions, and may even be unstable.



The new technique can be successfully used for materials repcesented using
any order fractional derivative constitutive model, and indeed for any representation of
the material behavior in the Laplace domain. The procedure may even prove to be
more efficient in the eigensolution of large-scale problems which incorporate classical
viscous damping than those which are presently available in many finite element
codes. Further development of this and similar methods should result in techniques
which can be effectively used on large-scale systems of the future with vibration
control reauirements.

2.0 The Fractional Derivative Representation of Material Behavior

The fractional derivative model of viscoelasticity is devPloped, hased on a
fractional derivative representation of the relationship between stress and strain within
a viscoelastic material [1,2].

M N D y
1_ bmDPm(-r(t)}+t,(t) = Goy(t)+ , GnDn(y(t)}
rm,.1 n-1 (1)

where x (t) is the material stress, y(t) is the material strain, the bm and Gn are real
constants, and Dk is the fractional derivative operator of order k.

A 5-parameter model car, be developed which includes a single fractional
derivative of both stress and strain. In the Laplace domain, this provides a Young's
modulus and shear modulus which are the ratios of the Laplace transforms of stress
ani 0-irain, and depend on the Laplace variable (frequency). Using the 5-parameter
model, the shear modulus can be expressed:

G( . (o ) Go+Gsa

y W) 1 +bs (2)

An additional constraint on the representation in equation (2) is that the values
of the powers a and 3 must be equal to be consistent with thermodynamic
considerations [3]. This representation of material behavior is consistent with the
macroscopic behavior of many rubbery and glassy materials, and is based on the
molecular theory of polymers. Experimental data of the frequency-dependent
behavior of a material can be fit using the fractional derivative model to allow the
description of the material behavior in the frequency domain.

As an example, consider the viscoelastic material DYAD-606 from Soundcoat.
Experimental data previously gathered for use on the PACOSS program was
available for this material at 680F in the frequen( t range from 1 to 46 Hz. This raw
experimental data was fit using the 5-parameter model and a nonlineq;r error-norm
minimization process. Using this technique, the five parameters of the model which
best fit the data were:
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0.7049
G0 = 246.45 psi, G 1 = 534.22 psi, b = 0.1043(sec) ° ,o = 0.7049, = 0.4885

Graphs of the experimental data and the resulting fractional derivativ,
representation of the frequency-dependent shear modulus and material loss factor ar,
given in Figures 1 and 2. Notice that the agreement between the experimental data
and the fractional derivative model are exceptional for this material. However, the two
fractional powers (a and p) differ for this fit of the material properties. The cause of this
anomaly is unknown, and a higher-order fractional derivative model may be requirec.
The above parameters were used in the subsequent example problem which included
this viscoelastic.

A similar fit was performed for the viscoelastic material 3M-966, and 68 0 1:
experimental data was also available for this material from previous PACOSS work.
The optimum model parameters for this material were:

-4 0.6053
=7.9856psi,G 7.6992psi,b = 5.29x10 (sec) a = 0.6053, = 0.6053

The agreement between the experimental data and the fractional derivativ)
model were equivalent to those found for DYAD-606. In this case, however, evei
though no constraints were imposed on the model parameters, the optimum values of
the fractional derivative orders were the same. This is consistent with th,3
therm%.ynamic requirements of the 5-parameter model. For both of these materials,
an outstanding representation of the frequency-dependent material properties wa3
achieved using the 5-parameter model. This agreement demonstrates thq
applicability of the fractional derivative model to many viscoelastic materials.

3.0 The Modal Strain Energy Method In the Approximate Solution
of the Open-Loop System

The MSE method is a well known method of approximating the eigenvalues
and eigenvectors of a dynamic system which includes viscoelastic material damping
treatments. This method assumes that the real modes associated with the real part of
the system stiffness matrix evaluated in the neighborhood of thc eigenvalue are a
sufficiently accurate approximation to the complex system eigenvectors. The
importance of the MSE method as a design tool cannot be overemphasized, and thE?
method allows the economical design of damping treatments for complex structure,,;.
This method approximates the solution to the frequency-dependent complex
eigenvalue problem, and provides insight to facilitate effective structural modifications.

In general, the frequency-dependent complex stiffness matrix (complex
impedance matrix) of a system which includes fractional derivative materials can ba
written as a sum of contributions from elastic elements and from each type (,f
viscoelastic material. If the Poisson's ratio of the material is frequency independen:,
the total stiffness matrix can be written:
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nvm
K (s) = K*l+ G, i(S)" Kvl

.1 (3)

whetr6:

K (s) = the complex impedance matrix as
a function of the Laplace variable

I= the frequency independent stiffness
matrix associated with all elastic
elements

G1l (s) = the frequency-dependent complex shear
modulus of the ith viscoelastic material

Kv, = the stiffness matrix associated with
all elements made of the ith
viscoelastic material, assembled with
a unit shear modulus

nvm = the number of viscoelastic material
types in the system

The MSE metnod then assumes that if the modes of the system are found using
the real part of the complex stiffness matrix which is assembled using viscoelastic
material properties on the imaginary axis (at s = 1w), that these vectors are sufficiently
"close" to the actual system eigenvectors, and that these approximate vectors arg
uncoupled through both the real and imaginary parts of the stiffness matrix.

Therefore, the typical sequence of steps in an MSE analysis are:

1) Form the real part of K(s) using an appropriate approximate value of the
eigenvalue taken along the imaginary axis.

2) Using the real part of K(s) and the system mass matrix, calculate the real
eigenvalues and eigenvectors.

3) Store those eigenvectors which are in the neighborhood of the approximate
frequency value assumed in step 1.

4) Repeat steps 1 through 3 until all approximate eigenvectors in the frequency
range of interest have been found.

5) Determine the approximate modal damping ratios using the MSE
distribution.

6) Construct the state-space form of the MSE model of the plant.

This procedures provides a set of q approximate mode shapes, frequencies,
and damping ratios found using the MSE analysis procedure. The damping ratios of
the system are usually computed using the formula:

NE

1(4)
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where:

wh= the approximate modal damping ratio
of the jth mode

SElj = the percentage of modal strain energy
in the ith element in the jth mode

il = the loss factor of the ith element in the
neighborhood of the jth modal frequency

NE = the number of system finite elements

This MSE procedure is equivalent to the following matrix operations:

1) Using an approximate eigenvalue on the imaginary axis, construct the
stiffness matrix K(s) using equation (3) and the system mass matrix.

2) Decompose the stiffness matrix into its real and imaginary parts, K,
and KR.

3) Solve the real eigenvalue problem (KR - W * M) 0 = 0 for the q lowest
eigenvalues and eigenvectors.

4) Mass normalize the eigenvectors from step 3.
5) Using the modes which are near the approximate frequency, construct

the matrix products:
4D M .4D = I

4)T - KR 4 d> = 032

DT . Ki • 0= KmI (5)

6) Form the second-order modal equations:
2 T

p+I'KmIp+0) *p = 0 'f (6)

7) Assume that the generalized velocities are equal to io times the
generalized displacements, and neglect the off-diagonal terms in Km:

P+D * +O 2 f (7)

where:
Dv(jj)=Km(jj)/0)(jj)

8) Under the above assumptions, the terms in the diagonal matrix Dvl are
2 .t ,j.0w.

9) Construct the state-space form of the plant using an assemblage of the
appropriate modes, natural frequencies, and damping ratios:
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x = A-x+B-u

or:

[I,]~ _( ~2 O 4T].

[cP o 1 0 PxJ 0 +P"

[ [0 ] (8)

This state-space form of the open-loop system can be used to design a control
system to provide desired closed-loop performance characteristics of the MSE plant.
However, as numerous assumptions are used in the computation of the open-loop
plant, the quality of the state-space model cannot be assessed. it will be demonstrated
through an example problem that the effects of these assumptions can result in
significant errors in the behavior of the closed-loop system, if the MSE plant is used in
control design and performance evaluation.

4.0 The Eigenstructure of the Fractional Derivative Elgenvalue Problem

It is necessary to develop the definition of the eigenvalues and eigenvectors of
systems which include viscoelastics modeled using fractional derivatives, to allow a
comparison with the approximate values derived from the MSE method and their
improvement. The transformed equations of motion for the system can, in general, be
written in the Laplace domain as:

Ms2
[M 2 + K(s)]. X(s) = F(s) (9)

where:
M = the system mass matrix

K(s) = the complex frequency-dependent impedance
matrix of equation (3)

X(s) = the Laplace transform of the system displacements
F(s) = the Laplace transform of the applied forces

The system dynamical matrix can now be defined as a function of the Laplace
variable. This matrix is:

Z(s) = M8 + K(s) (10)

For non-trivial solutions of the homogeneous differential equations, the
dynamical matrix must become singular. Therefore, similar to the definition for
classical undamped or viscously damped systems, the definition of an eigenvalue x of
the system with fractional derivative materials is:



IMs2 +K(s) .-= (II)

The eigenvalues can be determined by expanding the determinant of the
dynamical matrix and finding zeros of the characteristic polynomial. However, the
matrix K(s) involves the Laplace variable raised to fractional powers. Therefore, the
roots of this complex fractional-order characteristic equation are generally difficult to
obtain. A surprising result of this development is that there are, in general, infinitely
many roots to this equation for a finite number of degrees of freedom, if the fractional
powers cannot be expressed as a rational fraction. If the fractional powers can be
expressed as a rational fraction rim, then there are N(2m+r) eigenvalues where N is
the number of system degrees of freedom. The additional eigenvalues are located on
branches of the multi-valued fractional power function and contribute to response of
the system by an integral term along a branch cut [3].

All the eigenvalues of the system can be found by expanding the equations of
motion to clear the fractional powers [3,4,5], if the powers are expressible as rational
fractions and all viscoelastic materials in the system have the same denominator m. A
state-space model of the expanded system equations of motion may then be
constructed in either physical or generalized coordinates [6].

The associated eigenvector for any known eigenvalue can be found by solving
the homogeneous form of equation (9) for the mode shapes. To find a selected
eigenvalue and eigenvector, a procedure which will be termed spectral iteration may
be used. In this procedure, an approximate value for an eigenvalue is used to
construct the complex impedance matrih, and a complex eigenvalue problem is
solved. This procedure is given in equation (12).

Solve equation (7) for <D and know using an assumed value of X:

[M • ,new + K(. • (D = 0 (12)

A simple method of obtaining a selected eigenpair is to iterate using equation
(12). Using an approximate eigenvalue X, the matrix function K(x) is evaluated, and
the eigenvalues using this complex matrix are found. If X is a good approximate value,
then one of the eigenvalues found will be "close" to the initial QL'ess. This new guess
is then used to recalculate the complex stiffness matrix. By performing this process
iteratively, the procedure will converge to an exact eigenvalue and eigenvector of the
system.

This is similar to the inverse power method developed in [7] for the solution of
the fractional derivative eigenproblem, where a solution procedure based )n the
inverse power method with spectral shifting is used to evaluate the eigenpairs of the
system. This procedure of spectral iteration can be further developed and improved to
provide computationally inexpensive solutions. It will be shown that the MSE method
is a form of the spectral iteration procedure, and further improvements to the MSE
solution are possible at minimal computational expense.
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For the solution of large-scale dynamic systems with fractional derivative
materials, the major objective is to construct a reduced-order state-space model of the
structure from its finite element representation. Typically, only a small subset of the
system eigenvalues and eigenvectors will be required; and the solution of the
expanded fractional derivative equations of motion for a system with many degrees of
freedom would be computationally infeasible or even impossible if several materials
are used. Therefore, for a typical structural application, the concern is to locate
eigenvalues and eigenvectors of the system within a selected spectral radius from the
origin of the Laplace domain (i.e., the q smallest eigenvalues). Expansion of the ideas
of the MSE method and spectral iteration into a procedure consistent with subspace
iteration allows the evaluation of the desired eigenpairs in an efficient manner.

5.0 The MSE Method and Standard Subspace Iteration

The MSE method provides an approximation to the q lowest eigenvalues of a
damped system. In the solution of the fractional derivative equations, it is
advantageous to consider the mathematical basis of the MSE method and means to
improve the accuracy of the approximations. Therefore, consider the form of the
stiffness matrix developed in equation (3), and the reduction of the mass and stiffness
matrices in equation (5) using a set of q MSE approximate vectors as a vector basis
(subspace):

[d) M¢ 2 T, Z, *T
•D • M • +0 K(s). • P(S) = (D F(s)(l-,

These reduced equations can be written:

R  2  q nvmFR
M + Ko I+ G(aS K P(s)= F ()

I-i R.p(5 )(14)

where the reduced matrices are of size q x q and are formed by matrix triple products,
and the forcing vector is a q x 1 generalized forcing vector:

R T
M (D *M (D

R TK*1= ¢ *K* 1e°c1

R T
v,= "Kv4'4

R T
F (s) = , .F(s) (15)

It is obvious that since the eigenvectors computed using the MSE method will
generally be computed using several real stiffness matrices, the reduced mass matrix
will not be an identity matrix, and the real part of the reduced stiffness matrix will not be
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diagonal. However, these matrix equations are similar in form to those in equation
(12) and can be solved using spectral iteration in a similar manner,

i.e., solve:

[RnX2 + KMRR. = 0]

nowSW X 1 e 0 (16)

for the solution vectors T and the eigenvalues X using spectral iteration.

This iteration process is a Ritz analysis with the MSE method approximate MSE
vectors 'bMSE as the solution space [8]. The approximate eigenvalues of the full system
are the eigenvalues X of the reduced system, and the approximate eigenvectors are
the complex vectors:

(DC= ( MSE"T (17)

If the range of the approximate MSE vectors spans the solution space of the
exact eigenvectors, the eigenpairs generated in this manner are exact solutions for the
system. Notable cases where this will occur are when the damping in the modes is
negligible, or if the entire system is composed of damped elements with an identical
fractional derivative representation (i.e., proportional damping). In these cases, a set
of real vectors can be found which provides an invariant subspace of the fractional
derivative eigenvalue problem. The MSE approximation for the natural frequency and
damping will be in error, however, even for a system of all damped elements.

In this manner, the MSE method can be shown to be an uncoupled Ritz analysis
with the MSE vectors as a subspace. In fact, it is a Ritz analysis using uncoupled
vectors (the Rayleigh Quotient) which was first used to derive the modal strain energy
method [9]. It is assumed in the MSE method that these vectors are uncoupled in
equation (16); therefore, the assumed reduced basis eigenvectors form an identity
matrix.

The improved solution of the eigenvalue problem with a single spectral iteration
is an inexpensive means of improving the quality of the solution, as it merely requires
the generation of a real reduced mass matrix, a real reduced elastic stiffness matrix,
and as many real reduced viscoelastic matrices as there are types of viscoelastic
materials. The reduced complex impedance matrix is then formed by simply adding
the reduced elastic stiffness matrix and the reduced viscoelastic matrices multiplied by
their respective complex shear moduli. Therefore, to generate the initial reduced
problem, products which involve only real matrices and real vectors must be formed.
The solution of the q x q reduced-order problem by spectral iteration will be
inexpensive due to the small order of the system.

In general, the real MSE vectors will not provide an invariant subspace of the
fractional derivative problem. Therefore, a method is required to improve the
subspace and allow a more accurate representation of the solution. To examine

BCA-1



methods of subspace improvement, consider the subspace iteration eigensolution

method for real, constant stiffness and mass matrices.

Subspace Iteration Steps:

1) Select an initial subspace of vectors 4 k of size N x p where N is the
system order, and p is larger than the number of desired vectors, q.

2) Decompose the stiffness matrix into its L D LT factorization
3) Perform a simultaneous power iteration on the approximate vectors

using forward elimination and back substitution,
i.e., solve for ('Dk,1 using:

2
K • (eDk+ = M * (Dk *X k (18)

4) Create reduced mass and stiffness matrices:

R T
M k+1 = 0k+1 * M 0 4bk+1

R T
Kk+1 = 0k+1 l K " - k+1 (19)

5) Solve the reduced eigenproblem for Xk.1 and Pk+1.

M+le k+l+K+11 "k+l = 0 (20)

6) Orthogonalize the current subspace:

¢k+1 = k 1 "Dk ' (21)

7) Return to step 3 with Ok , as new subspace, and iterate until convergence.
8) Perform a Sturm sequence check to determine if all desired eigenvalues

and eigenvectors have been found.

This procedure may be used for the fractional derivative eigenvalue problem,
with spectral iteration performed at step 5 for each major iteration. The greatest
expense of this procedure, however, would be the computation which improves the
subspace at step 3. For the fractional derivative eigenvalue problem, the "stiffness"
matrix is complex and a function of the eigenvalue; and it is infeasible to factor the full-
system size complex matrix and perform several complex matrix/complex vector
products at each iteration. This is the major deficiency of the inverse power method
with spectral shifting presented in [7], as a complex factorization was used for each
power iteration.
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To alleviate these difficulties, a method of accelerated subspace iteration which
does not include the inversion of a matrix was developed for use in the solution of the
fractional derivative eigenvalue problem. This procedure allows the improvement of
the subspace with a minimum computational burden, and rapid convergence to the q
smallest system eigenvalues.

5.0 Accelerated Subspace Iteration for the Solution of the Open-Loop
Elgenvalue Problem

Subspace iteration was first developed by Bathe in the early 1970s [10].
Further advances in the technique were subsequently developed and were
designated accelerated subspace iteration [11]. in this procedure, Lanczos vectors
are used to generate the initial subspace, and spectral shifting during the power
iterations is performed using the approximate inversion method of successive
overrelaxation. This method allows fewer than q vectors to be used as the p size
subspace, while in the standard subspace iteration method usually the minimum of
2,q or q+8 vectors are selected as a subspace. Using several of the ideas of the
accelerated subspace iteration, along with the spectral iteration technique and several
new developments, an accelerated subspace iteration procedure for the fractional
derivative eigenvalue problem was developed.

The basis of this technique is a preconditioned conjugate gradient procedure
developed specifically to allow the iterative solution of linear equations ",ith a
symmetric coefficient matrix which is complex,

i.e., the solution technique was developed to solve the linear equations:

A.x = b (22)

where the matrix A is an N x N symmetric complex matrix, and the complex vectors x
and b are of size N. The derivation and the numerical algorithm will not be discussed
here, however, the use of the technique will be described. The technique splits a
shifted dynamical matrix into two components: Ko and AK+(2w+g 2)M, where 4 is an
appropriate spectral shift at each step selected to allow rapid convergence to a
particular eigenvalue, and a is a shift used in the generation of the matrix Ko. The
updating procedure which is used to replace step 3 in the standard subspace iteration
is then the formula:

2
K o  = - (AK + 2a( IM + 11M ) 4D J (23)

where the residual error after J iterations is defined as:

2
rl = Ko" o 11 + (AK + 2r.g,+lM + igj.iM) (:DI+ 1  (24)

The search directions are generated by conjugate gradients, and are selected
to minimize the residual while being orthogonal through the dynamical matrix to all
previous residuals and approximate modal vectors. This method is, therefore, similar
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to the preconditioned method of conjugate gradients [12].; however, it was designed to
allow complex matrices. The search vectors can be interpreted as Lanczos vectors
selected to provide the greatest reduction in the norm of the residual vector on each
step. With a proper selection of the matrix Ko, this procedure will converge in few
iterations to an eigenvector which is closest to the shift point a+g. An excellent
selection of the preconditioner is the shifted real stiffness matrix (shifted by a value of
a) computed during the modal strain energy procedure (it can be assumed that a
shifted real stiffness matrix (KMsE + a M) was factored during the solution of the MSE
real eigenvalue problem):

Ko1 = (KMSE+ . M) (25)

This selection results in low rank of the AK matrix, as this matrix contains only
terms from viscoelastic elements and, therefore, has many zero rows and columns.
The eigenvalues of the matrix Ko-1 - AK will be small, as the MSE stiffness matrix is
"close" to K(s). These properties of AK and Ko- 1 A AK provide rapid convergence of
the iterations [12].

Convergence of this conjugate gradient procedure results in an eigenvector/
eigenvalue of the system. Very importantly, the iterations need not be performed unil
convergence in the accelerated subspace procedure, as the objective of step 3 in the
standard method is simply to improve the subspace. The linear combination of
Lanczos vectors generated as search vectors provide a good set of basis vectors with
which the subspace can be improved, even though the iterations have not converged.
Therefore, in the accelerated subspace procedure, the iterations implied by equation
(23) are only performed once, and these vectors are used as a new vector basis. After
orthogonalization, a further basis improvement is performed.

In summary, the steps which comprise the accelerated subspace iteration
procedure for systems which include materials modeled with fractional derivatives are:

1) Select the MSE solution vectors as the initial subspace.
2) Create the reduced mass, elastic stiffness, and viscoelastic stiffness matrices

as per equation (15). Store all matrix/vector products such as Ke, ° dk+1.
3) Perform spectral iteration within the subspace to compute new approximate

eigenvalues and eigenvectors.
4) Update matrix products using reduced basis modal transformation.
5) Improve the basis vectors, and update matrix/vector products using the

complex conjugate gradient procedure.
6) Return to step 3 using new basis vectors and updated matrix/vector

products.
7) Iterate from steps 3 to 6 until convergence of the subspace.

Notice that the only matrix/vector products required in the solution procedure
are contained in the conjugate gradient algorithm, with two plus the number of
viscoelastic materials matrix/vector multiplications required for each basis vector per
conjugate gradient iteration. Also, the total solution subspace need not be updated cn
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every aration; and only the vectors which correspond to the eigenvalues which have
not yet converged need be updated each time.

The above procedure can be considered a hybrid of several highly successful
eigenvalue extraction methods: the power method with spectral shifting; Ritz analysis;
and Lanczos methods, which are combined with spectral iteration to allow for the
frequency dependence of the stiffness matrix. Experience on example problems
shows that this method is very effective for solving the fractional derivative eigenvalue
equations for the invariant subspace corresponding to the lowest system eigenvalues.
A complex Sturm sequence check can be used to verify that all eigenvalues/vectors
within a given spectral radius from the origin have been found by factoring a shifted
impedance matrix; however, it may be assumed that the initial MSE solution provided
approximations to all eigenvalues within the search region.

7.0 Generation of the State-Space Plant Model

After a selected number of modes of the open-loop system have been
generated by the above procedure, an appropriate state-space description of the plant
is required for performance evaluation and the generation of vibration control systems,
if needed. This state-space model should allow the use of available modern control
algorithms to be used to generate a compensator which will provide desired
performance of the closed-loop system. Therefore, a complex modal formulation of the
plant was developed to obtain this state-space description. This formulation finds a
viscous representation of the plant which has identical eigenvectors and eigenvalues
to the fractional derivative system. This is an approximation, however, it provides the
most accurate viscous representation possible.

The generation of the modal state-space equations begins with the equations of
motion of the full-size open-loop system in the Laplace domain. An appropriate
general form of these equations is:

[M 0. [X(s) .,s -CR(s) -KR(S)] [X(s)s 1 + [F(s)
[ -K R(s)1 X (S) J [-KR(S) 0L X (s) 0 (26)

where: KR(S) = real(K(s)) - real(s) imag(K(s))
Imag()

C R(S) Imag(K(s))
Imag(s)

Notice that these equations provide an identical impedance matrix for the
fractional derivative system and the viscous system. By solving the equation.s in the
Laplace domain for a system eigenpair, a modal substitution which uncou es the
equations with K(s) evaluated at an eigenvalue can be constructed. An appropriate
modal substitution is:

X(s) P(s)(27)

(s['(27)



or X = P

where:
) A system eigenvector found using spectral

iteration
X - A system eigenvalue

P(S) = the Laplace transform of the generalized
coordinate

With the substitution of the transformation as given in equation (27), the single
coordinate which corresponds to an eigenvector of the fractional derivative system
coordinate can be uncoupled from all other coordinates. This is achieved by noting
that the matrix on the left-hand side is symmetric; and that if all the eigenvalues of the
complex system were found using this constant value of K(s), the full-size matrix w
would be orthogonal to this matrix. Therefore, with the correct normalization, the left-
hand side can be transformed to an identity matrix. This yields an uncoupled equation
for a single generalized coordinate and also for its complex conjugate. The correct
normalization for the individual eigenvectors is such that:

T 2 T
•D -M.O. X - * .K(X,).4 = 1 (28)

where 0 is a single eigenvector, anc ., is its associated eigenvalue.

Notice that the complex conjugate modes and natural frequencies and their
normalization are found using this method. This is consistent with the fractional
derivative material representation, as the fractional derivative description provides a
coinplex conjugate shear modulus at a complex conjugate value of the Laplace
variable:

K(s) and K(s) are related by:
K(s) = K(s) (29)

where - denotes complex conjugation.

Therefore, the complex conjugate eigenvalue and eigenvector of any solutions found
in the accelerated subspace procedure are also eigenvectors/eigenvalues of the
fractional derivative system. This is required to provide ieal, stable solutions in the
time domain. An additional requirement on the complex impedance matrix K(s) is that
it must smoothly become a real matrix at the origin of the Laplace domain. This
ensures causality of time domain solutions, and it is obvious from the 5-parameter
model that this requirement is met.

Finally, a normalized modal matrix can then be assembled which provides the
transformation of the equations into truncated modal form in the Laplace domain:
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0D 0 (30)

where 0 is an N x q matrix of nornalized eigenvectors, and X is a q x q matrix of
eigenvalues. Using this modal transformation and taking the inverse Laplace
transform of these equations yields the final form of the state-space equations in the
time domain: P 0;1 T.

Lo~JL~J+ V.[

[XJ p 4] (31)
These equations are in standard first-order state-space form and, therefore, can

be used in conjunction with modern control algorithms to design a control system or
predict system performance.

6.0 Applicatinn of the Solution Procedure to the PACOSS
Multi-Actuator Control Experiment

To show the applicability of the procedure to the solution of realistic dynamics
and control problems which incorporate viscoelastic damping treatments, an example
system was selected. This system was the PACOSS Multi-Actuator Control
Experiment (MACE) shown in Figure 3. This structure was previously constructed
under the PACOSS Program to verify the performance of the control system hardware
using modern control algorithms in a multi-actuator digital control application.

The original MACE hardware consisted of three proof mass actuators mounted
to a series of flat aluminum beams. The system was hung from steel cables at three
points with 60.9-lb/in. springs located at the top of the susoension. Constrained layer
damping treatments using DYAD-606 damping material with steel constraining layers
were applied to six locations on the beam members. These damping treatments
provided from 0.5% to 2% critical damping in the modes of the system below 15 Hz.

While the original dosign of the MACE was satisfactory for the purposes of
validating the successful operation of the PACOSS control system hardware, the
relatively low damping levels are not characteristic of those which can be achieved in
damped systems Therefore, several modifications to the original design of the MACE
structure were made for this example problem. First, the thickness of the DYAD
damping material was increased from 0.050 in. to 0.120 in. to increase the damping
performance of the constrai-ed layer treatments. Second, viscoelastic dampers were
designed which were placed in parallel with the susper.,*on springs. These dampers
use 3M-966 material in a configuration such that the spring constants in units of lb/in.



Figure 3 -Photograph of the PACOSS Multi-Actuator Control Expe~riment



were 0.25 multiplied by the material shear modulus in psi. Finally, four ideal actuators
with ideal inertial velocity sensors were used instead of the three proof mass actuators
used on the actual hardware. Four actuators were used to remove the actuator from
the symmetric axis of the structure and to increase the control authority for anti-
symmetric modes (Figure 4).

A finite element model of the damped structure was created using
MSC/NASTRAN (Figure 5), which included the typical plate and solid element
modeling of the constrained layer damping treatments as well as the pendulum
behavior due to the suspension. The full-system mass matrix, the elastic/differential
stiffness matrix excluding the damping materials, the stiffness matrix associated with
the DYAD-606 material, and the stiffness matrix associated with the 3M-966 shear
dampers were then assembled. Compatible stiffness matrices were easily formed by
altering the material properties of the various components to be a small number. For
example, to form the DYAD-606 stiffness matrix, the moduli of the main members and
constraining layers, the suspension spring constants, and the 3M-966 moduli were set
to extremely low values; and the modulus of the DYAD was set to unity. The full-
stiffness matrix for any value of the Laplace variable could then be easily constructed
by addition of the constitutive matrices, as per equation (3).

A performance metric was selected for the qvstem, which was the vertical
motion of a single point on the structure for noise inputs at the actuator locations. The
objective to be achieved was a factor of 100 decrease in root mean square (RMS)
motion of the performance point for white noise inputs from 0 to 30 Hz, as compared to
a system without added damping treatments or active controls.

A modal strain energy analysis was performed on the system to approximate
the open-loop modes, natural frequencies, and damping ratios in the frequency range
from 0 to 30 Hz. The real stiffness matrix was assembled at six selected frequencies
which were known to be "close" to system eigenvalues. The standard MSE method
was used, with the modes nearest the corresponding frequency used to construct a
state-space model of the plant as detailed in Section 6.0. Table 1 provides the open-
loop frequencies and damping of the system computed using the MSE method.

Figure 6 provides the frequency response of the performance point motion for
inputs at actuator #2, for both the MSE system and also for the system with 0.2%
critical damping in the modes. Notice that the system has high modal density in the
0 to 30-Hz frequency range. The addition of passive damping treatments to the system
lowers the RMS response by approximately a factor 5, so that active control Is required
to further reduce the system RMS response by a factor of 20.

Two active control algorithms were considered for the MACE example problem:
local velocity feedback, and Linear Quadratic Gaussian with Loop Transfer Recovery
(LQG/LTR). For local velocity feedback, a feedback gain of 0.25 lb-sec/in. was Lsed for
the inertial velocity at each of the actuators. The closed-loop response of the system
was generated using the MSE state-space model, and compared with the open-loop
system and the exact frequency response of the closed-loop fractional derivative
model (Figure 7). Notice from the Figure that the agreement between the exact
solution and the MSE solution is relatively good, differing only in some frequency
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Table I - Natural Frequencies and Damping Ratios of the MACE
Computed Using MSE

Frequency Damping Frequency Damping
Mode # (Hz) Ratio () Mode # (Hz) Ratio()

1 0.28 0.0 11 12.6 7.9
2 0.28 0.0 12 13.1 4.1
3 0.28 0.0___ 13 15.4 3.3
4 2.83 5.0 14 21.8 1.2
5 2.98 4.0 15 24.3 5.1
6 3.46 3.8 16 25.7 2.5
7 4.82 5.4 17 30.5 3.9
8 6.18 4.2 18 34.3 3.3
9 8.17 7.0 19 37.1 3.8
10 1 10.3 1 2.7 1 20 137.8 _3.7

Performance Point Response for Damped and U~ndamped Synemn
101

----------- --------------- Undamped

Damped
100-

10-1

0 5101 253

Frequency (Hz)

Figure 6 - Performance Point Frequency Response for Undamped System
and MSE Damped Solution
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Figure 7 - Local Velocity Feedbeck Closed-Loop Response
Exact and MSE Solutions

ranges. The reduction in RMS response in this case is a factor of 3, when compared to
the passively damped system. This agreement is consistent with PACOSS experience
on the Dynamic Test Article [13], which used the MSE method to accurately predict the
closed-loop response of a damped system with a local velocity feedback controller.

The exact frequency response of the closed-loop system was generated, using
direct inversion of the closed-loop impedance matrix at each frequency point. This can
be accomplished for an arbitrary controller by converting the compensator into an
equivalent N x N frequency-dependent impedance matrix and adding it to the open-
loop impedance matrix,

i.e., determine the N x N frequency-dependent matrix G(9) which
describes the Laplace transform of the control forces in terms of
the motion of the structure. Then the Laplace transform of the
closed-loop structural motion is:

Xc(s) = Hcl(s).F(s)

H CO) = [M.,2+K(s)G(s)[ (32)

Using this relationship, the closed-loop frequency response between applied noise at
the actuators to the performance point motion can be computed at s=o by direct
matrix inversion.
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A compensator was also designed to control the MSE state-space model using
the LQG/LTR algorithm. In this algorithm, a linear quadratic regulator is designed
which provides the desired performance characteristics using full-state feedback. A
linear quadratic estimator is then designed which approaches the full-state feedback
performance by increasing a loop-transfer recovery parameter in the estimator design
process. The regulator was designed so that the desired factor of 20 reduction in RMS
response over the damped open-loop plant was obtained, and the loop-transfer
recovery parameter was selected to the minimum value which provided acceptable
performance of the estimator.

The exact closed-loop frequency response of the system was then generated
using the LQG/LTR compensator designed for the MSE plant. A comparison of the
open-loop response, the MSE prediction, and the exact closed-loop frequency
response are given in Figure 8. Notice that there are large variations between the
frequency responses predicted using the MSE plant and those found using direct
inversion of the closed-loop impedance matrix. Although the closed-loop system does
perform better than the open-loop system, in the 20-Hz region the closed-loop
performance is actually amplified over the open-loop response. Furthermore, the
reduction in RMS response is only a factor of 11, whereas the MSE plant predicts a
reduction of a factor of nearly 21. This large discrepancy shows that for sophisticated
active control algorithms, the MSE state-space model does not adequately describe
the dynamic characteristics of the relatively simple MACE plant. A more accurate
description of the open-loop system is required for a control design model.

A state-space model of the open-loop system was then generated using the
accelerated subspace iteration procedure as described in the previous sections. This
model was then used to design an LQG/LTR compensator to reduce the RMS
response by a factor of 20, similar to the MSE design. The closed-loop frequency
response predicted using this state-space model was then compared with the exact
closed-loop solution Figure 9 shows a comparison of the damped open-loop system
frequency response, the exact open-loop frequency response, and the modal closed-
loop response generated using the exact method and the reduced-order state-space
model. Notice that there is good agreement between the open-loop performance
predicted using the 40-state modal plant model and the exact response found by direct
inversion.

Most important for the closed-loop system, the reduction in RMS response using
the exact method is a factor of 21, which is the predicted reduction. The closed-loop
performance predicted with the state-space model agrees well with the exact solution,
although there are some differences in the frequency response. While the open-loop
plant model accurately predicts the closed-loop response in this case, it may not in
general. This is due to the assumption that the plant has viscous damping, which
provides a plant which is locally accurate but may not be accurate if the poles are
significantly altered by the controller. This is to be expected, as in the formatio, of the
open-loop plant, the poles which describe the variation of the viscoelastic properties
with frequency have been truncated. The introduction of the controller alters the
eigenvalues of the plant and, therefore, a closed-loop eigenvalue problem must be
solved with spectral iteration to achieve the best agreement with a modal model.
However, the closed-loop performance shows that the described procedure provides
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an accurate reduced-order plant model which allows the design of a controller which
provides the desired closed-loop performance.

The variation between the MSE and complex modal open-loop plant models
can also be seen in the comparison of the open-loop frequency responses. The
greatest variation between the models is typically in the phase of the frequency
response. As an example, consider the comparison of the phase of the frequency
response of the MSE model, the complex modal model, and the exact solution given in
Figure 10. Notice that there is nearly e:.act agreement between the complex modal
model and the exact solution, but there is a large discrepancy between the phase of
the MSE frequency response and the exact frequency response in several frequency
ranges. At a frequency of 25 Hz, the phase of the MSE frequency response is actually
1800 out of phase with the exact solution. This phase difference can cause significant
performance degradation or even instabilities of the closed-loop system.

For the accelerated subspace procedure to be used for the analysis of actual
systems, the cost of the procedure must not be excessive. Therefore, a comparison of
the computer requirements for the MSE solution and for the improvement of the MSE
solution using accelerated subspace iteration was made. Table 2 provides a
comparison of the solution times for the two methods.

These computations were performed on a SUN 3/50 workstation, with the plant
model having 279 degrees of freedom. The computer times represent elapsed time in
seconds. To facilitate these computations, the full-size system matrices were reduced
from nearly 1100 degrees of freedom by a Guyan reduction using viscoelastic
properties in the middle of the desired bandwidth. This reduced model was then
considered the exact model description. The MSE solution was generated using
standard subspace iteration, and the MSE method to find the modes, natural
frequencies, and damping ratios of the real system. Six frequency values were used
to compute the MSE modes with the appropriate viscoelastic shear moduli. The
complex subspace iteration procedure was applied using the inverse of the shifted
MSE stiffness matrix with properties in the middle of the frequency band.

Notic6,,,ai..s., p;,hctVre is not excessive in terms of
computer time, requiring only 125% of the MSE solution time, no matrix inversions,
and 973 real matrix/complex vector multiplications. Therefore, the improvement of the
MSE solution using the procedure defined in this paper can be used economically on
large-scale structural systems, and will provide an accurate model for damped
systems with minimal additional computational expense.

7.0 Conclusions

The above development and example problem allows several conclusions to
be made in connection with the modeling of damped structural systems anc active
controls. The most important of these are:

1) The MSE method provides a tool which is very effective for use in the design
of damped structures; however, it may not have sufficient accuracy for use in
the final design of modern control systems for damped structures.
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Table 2 - Solution Time" for MSE Analyses and Accelerated
Subs pace Iteration with USE Starting Vectors

Number of Number of Total
Analysis Number of Matrix Matrix/ Elapsed

Type Analyses Decomps Vector Solution
________ ________Products Time (sec)

MSE Using
Subspace 7 7 1108 2815
Iteration

Accierated
Complex 1 0 973 3530
Subspace
Iteration __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ _ _ _
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2) The MSE method can be shown to be a low-cost approximation to a
subspace/spectral iteration. Therefore, the developed procedure can be
used in concert with the MSE method to improve the solution accuracy as a
design cycle progresses.

3) The developed design and analysis procedure can be used efficiently in the
solution of large-scale dynamics problems with viscoelastic damping treat-
ments and active controls.

4) Although not shown here, the technique of subspace/spectral iteration can
be used for the solution of problems with viscous damping or combined
viscous/viscoelastic damping, and for closed-loop damped systems. The
method is as at least efficient as the techniques for solving complex eigen-
value problems currently available in many finite element codes. In fact, the
conjugate grac ant inverse power iterations are very similar to those
performed in MSC/NASTRAN [14], but convergence is accelerated using the
subspace procedure and conjugate gradients.

5) The solution procedure obviates the necessity for the description of visco-
elastic materials or members using networks of springs and dashpots
(Maxwell elements), as the solution using these descriptions will inevitably
be more expensive and less accurate than using the fractional derivative
representation. These methods typically add a number of degrees of
freedom to the system matrices and increase solution costs; and the method
of solution of these eigenvalue problems in most finite element codes can be
shown to be similar to the eigenvalue procedure developed here for systems
with fractional derivative material representations. Damping element
properties can be written as a function of frequency using the fractional
derivative representation, and the solution to the equations can efficiently be
solved as developed previously. This frequency-dependent reduction can
be considered the equivalent of static condensation for systems which
contain damped elements that have negligible internal mass effects.

6) The cost of the eigenvalue solution procedure is independent of the descrip-
tion of the damping phenomenon in the system elements, as long as the
element impedance properties can be described as a function of the
Laplace variable. Therefore, if a higher-order fractional derivative represen-
tation is appropriate for a particular material, the solution procedure is
unaltered, and the cost is effectively unchanged.

7) The accelerated subspace solution method can be used for eigenvalue
problems which contain combinations of viscous dampers, viscoelastic
dampers, and even for closed-loop systems. This facilitates an accurate
modal representation of actively controlled damped systems.
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ABSTRACT
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INTRODUCTION

A very efficient and accurate method for the treatment of
structural dynamics engineering problems with frequency
dependent damping is based in the frequency domain solution of
the motion equations. Physical and geommetrical
nonlinearities, when present, should be considered in these
problems. Only recently methods of nonlinear dynamic
structural analysis in the frequency domain have been
adressed. Several researchers have presented contributions in
this subject. Kawamoto [1983] described a method callec Hybrid
Frequency-Time Domain, abreviated HFTD, for nonlinerr analysis
in frequency domain. Wolf and Darbre [1986] pre:;ented the
segmenting approach of HFTD method and obtained its
convergence properties. Hilmer and Schmid [1988j describe a
technique similar to the segmenting approach using Laplace
Transform which computationally differs from Fourier Transform
only in the treatment of initial conditions.

All these methods present some problems related to its
applicability to real situations in structural engineering.
Two problems are adressed in this work. The first refers o
the computational effort in nonlinear analysis in 4 !
frequency domain where the conventional process needs numerous
executions of direct and inverse Fourier transforms of complex
series with a great number of terms. Consequently, the memory
allocation and the computational effort is normally very high.
The second problem is the treatment of initial conditions by a
segmenting approach. Hilmer and Schmid [1988] state that the
treatment of non null initial conditions through Fourier
Transforms is numerically unfavorable because, in general,
step functions cause great errors in transformed functions.

The SILFD method, described by Venancio-Filho and
Claret [1989], combined with the Implicit Fourier Transform
Algorithm for dynamic response in frequency domain,
Venancio-Filho and Claret (1991], solves efficienitly the first
problem. The second problem is treated here using the physical
significance of initial conditions and transforming the
original problem in another with null initial conditions.

THE IMPLICIT FOURIER TRANSFORM ALGORITHM

The dynamic response of a SDOF system in the frequency
domain can be expressed by the following equations, Clough and
Penzien [1982]:
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mn'
Gj i 2T-

N-1

V(t) H( ) P(t o) e (1)

2TO

and

N-i

P(o) = At p(t n e N (2)

n=O

The total time interval T in which the response is to be
P

calculated is divided into N equal time intervals given by

T
P

At - (3)
N

and the discrete times in which the )]-l is defined arl given
by T

Pt = n At = n (0 r. t .(4 )
n N

The frequency range is likewise divided .o N equal intervals
Aw expressed as

2 n

AW -(5)
T

P

and the discrete frequencies i are taken according Table I
( see Appendix 1 ).

In equation (2), P(c ) is the discrete Fourier transform
of the load; in equation (1), H( M) P(G) is the discrete
Fourier transform of the response ( or the response in the
frequency domain ) and v(tn) is the inverse discrete Fourier
transform of the cesponse ( or the response in the time
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domain ).

The dynamic response expressed by equations (1) and (2)can be numerically determined by the Fast Fourier Transform
algorithm.

Let now

4p) = 4 P(t 0 ), p(t ) p(t2),. ., P(tn) .. p(ts1 ) } (6)

and

{v} = 4V(t ), v(t) v(t 2),..., v(t ),... ,v(t ) (7)0 ' 2n N-1

be, respectively, the vectors of the load and the response at
the discrete times

t = nAt, n = 0,1,2,...,N-1, (8)
n

and let

{P} = I PT% P), PTW), P(),.. ., P( ),... ,P(W ) } (9)1 m N-1

be the vector of the discrete Fourier transform of the loaddefined at the discrete frequencies & interpreted according
to Table I.

With the definition of equations (6) and (9),
equation (2) can be casted in matrix form as

P) = At [E'] 1p) (10)

where the (NxV) matrix [Es] is defined as the matrix whose
generic term E is

mn

E e-mna (11)
mn
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or, explicitly,

oe0 e 0 0 0 0e e .. •.e ...

e e ...e ... e

14a i 2na -12(N-1)a
e ...e

E (12)

I mnO -im(N-I)a
e

Symmetric

-i (N-1) ae

where a = (2n/N). By the same token, the response from
equation (2) is written in matrix form as

{v} - [E] [H] {jp (13)
2n

where [E] is the matrix defined in equation (11) with positive
signs in the exponentials instead of negative ones, and [H] is
the diagonal matrix formed with the complex frequency response
functions calculated at the discrete frequencies of Table I.
The typical term of [H] is given by

H()=( -m2 +i )-1
H (k- m_ + iW c) (0 ! m S m-i) (14)

where k, m, and c are the stiffness, mass, and damping of the
SDOF system, respectively. Substituting now (P} from
equation (10) into equation (13), the following equation is
obtained:

1

{V} - [E] [H] [E] {p} (15)
N

Equation (15) expresses the matrix formulation of the dynamic
analysis of SDOF systems in the frequency domain. The
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calculation of the structural response in the frequency domain

through this equation is the IFT algorithm.

THE SILFD METHOD

Consider the SDOF system of Fig. 1 submitted to anarbitrary excitation p(t). The spring stiffness k depends onthe displacements v due to the system non-linearity and thedamping coefficient depends on the frequency of theexcitation, w. The problem is then to integrate the dynamic
equilibrium equation

mV+ c()4) + k(v)v = p(t). (16)

As the damping coefficient is W dependent afrequency-domain analysis has to be performed and, as thestiffness depends on the displacement, a linearizationtechnique must be employed. Consequently the present method isa Step-by-step Incremental Linearization in the FrequencyDomain (SILFD) method. In each linearized step a secant
stiffness is considered.

In order to calculate the response of the system governedby Eq. 1 two approximations are made. The first one is theapproximation of the given load by piecewise linear segments.The total time interval in which the response is to becalculated is divided in intervals Ati = tj - ti-i; pi andpi-i are the values of p(t) in the times tj and ti-1,respectively, and Apj = pj - pj-i, Fig. 2a. The load variation
in time interval Atj is given by, Fig. 2a,

P() = PJ-1 + Apj- (17)
At

where r is the current time in Ats (0 s - SAtj). The secondapproximation refers to the spring force versus displacement
curve. This curve is also approximated by piecewise linearsegments as indicated in Fig. 2c. The levels of these twoapproximations depend on the accuracy with which the load andthe stiffness variation can have a good representation.

The response of the system is calculated through thelinearized steps along the time intervals At] in which thespring is considered linear with stiffness kj, Fig. 2b. thelinearized dynamic equilibrium equation in time interval Ati
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is

mV + c(5) + k v = p(T) (18)

with the initial conditions vj-1 and ;Pj-i, Fig. 2a. Herein thetreatment of the initial conditions departs fromVenancio-Filho and Claret [1989] in order to circumvent theerrors in the transformed functions to the step functions.

The displacement response in time interval Atj due to theapplied load obtained through the IFT algorithm is

{V }L Az; [E] [H] [E*] (pJ)L (19)

where {PS}L is the load vector in the time interval Atj.

The displacement response due to the initial displacement
is equivalent to the response due to a constant force, in the
time interval Atj, given by

{pi}i = -k -v J-1) (20)

where {1 is a vector with all elements equal to 1.
Consequently the response is obtained from Eq. 19 as

{v } _ A [E] [H] [E'] k v (1). (21)J-1 2r Jc -

The displacement response due to the initial velocity
j-1 is the response to an impulse m j-i which is obtained

from the unit impulse response function as

v =m' h(t). (22)

h(t) is the inverse Fourier Transform of the complex frequency
response function H(w) and is given by
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h(t) = 2 H e' dw. (23)

Considering Eqs. 23, 22, and 15, the response due to J-1 is

obtained as

m A4

Iv = - [E) [H] I) . (24)
v j - 27r

The total response in time interval Ati is the given by the

sum of the responses in Eqs. 19, 21, and 24. The result is

{v i - [E][H][[E'] ({p -kv_) _ k1v1J. (25)

EXAMPLES

A SDOF system formed by a mass m = 1 kg and by a bilinear

spring with constants Ki = 10000 N/mm and K2 = 10 N/mm was

analysed by Kawamoto (19831 considering undamped vibrations.

The same system is now analysed considering the following

cases: I)- undamped system; II)_ frequency-dependent damping

acording to the function c(w) shown in Fig. 3; III)-

frequency-dependent damping acording to the function c(w)
shown in Fig. 4. The load function is

p(t) = 50 sin(1.5t) + 100 sin 0.005t (26)

which is pictured in Fig. 5. The natural period of vibration

is T = 0.063 sec. Kawamoto [1983] considered At = 1 sec to

perform the analysis of system's response through the HFTD

method, and At = 0.02 sec using direct integration of

equilibrium equations.

In case I, using the SILFD method with the IFT, a time

interval At = 25 sec is used, and the system's response is

shown in Fig. 6. Comparing this response with Kawamoto's one

( Kaiamoto [1983], Figure 6.94, page 341 ), it is evident that

the proposed method is efficient in predicting the maximum and

minimum response of the system. Furthermore, the proposed

method is better than HFTD in describing the "true" response

of the system, particularly if we consider the accentuated
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spring softening.

The responses of Cases II and III, Figs. 7 and 8,respectively, show that frequency-dependent damping is treatedconveniently by the proposed method. Others types of c(w)functions can be considered with no changes in the algorithm.A very small diferences in the moduli of maxima displacements
are observed from Case I to Cases II and III. One reason ispredominant for this fact: the steady-state response iscalculated and the static amplitude p(t)/K2, for such a small
value of K2, is predominant in the system's response.

CONCLUSIONS

The proposed method is efficient for treatment of dynamicnonlinear systems with frequency-dependent damping. In afuture work, the computational effort needed will be measuredand compared with the cpu time of others methods. Howewer, itis very apparent that the SILFD method combined with theIFTalgorithm is well suited for nonlinear analysis infrequency domain, optmizing computational effort and memory
allocation.
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APPENDIX

The discrete frequencies employed in this formulation
must be interpreted according Table I. Taking-into account the

frequencies w from Table I, H(w) and H(Co m), Eq. 14, are

complex conjugate.

Table I. Discrete frequencies (N odd)

m m or (N-m)w

0 0 0

2 2 2AW

(N/2-1) (N/2-1) (N/2-1)Ao

N/2 N/2 (N/2)AW

(N/Z+1) (N/2+1) [-(N/2+ilJAL

N-2 2 -2Aw

N-I 1 -A

BCB-1I



k VMt

C (W)

Fig. 1- SDOF system.

13GB- 12



PMP

tAt

(a)

V Vi

VI-I v

tj~ 1  II

(b)

Fig. 2- (a) Load variation; (b)- displacement response.

BB-13



n -

ga

sn
40 -

70-

ID-

20 -ina].

In

1n

a 0.2 O.4 ales ON 0.1 0.12

'RmqUEN CY rod/mo)

Fig. 3- Frequency-dependent damping in case II.

I0n

on

onD

30 -

Il

10

0.0 010 ~4 o.oe 1.on 0.1 0.121

FIO[UIN UCY (ro d/no)

Fig. 4- Frequency- dependent damping in case II

BCB- 14

En m m NnmMmH



120

In

40-

z

-I0

-8a

-inu

-In0

-140

u.0uu 0.200 0.400 0100 0.100 1.000 1.200 1.40

TWE (AG E-3 moo.)

Fig. 5- Load function.

14-

12

10

2 a.

-2

-12-

00.2 0.4 0.6 0.1 1.2 1.4

TWE (x10E-3 @so)

Fig. 6- System response in case I
BCB-15



12-

II

4

2

4-

2
Si

-4-

-12

-14

G1. 2 04 0.1 all 1 1.2 1.4

Fig. 7- System respoise in caseI.

1416



ON A LINEAR PROPERTY OF LIGHTLY DAMPED SYSTEMS

Z. Liang, G. C. Lee, and M. Tong

412 Bonner Hall
StAte University of New "")rk at Buffalo

Amherst, NY 1, 1
Tel. (716) 636-2771

ABSTRACT

As one of the direct applications of complex damping theory, a useful

property of structural damping is presented in this paper. If a structure

is linear and lightly damped, (i.e. the maximum damping ratio < 0.3), then

increased damping of the structure will result in proportional change in

each modal damping ratio of the system. This property Is particularly useful

in damping re-design and damping measurement. A number of experimental

and numerical examples are also presented.
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INTRODUCTION

Quantities such as i-e and exp(- ) , where is the damping ratio and

w is the undamped natural frequency, are often seen in the studies of

dynamic systems. Direct treatments of these quantities are difficult.

Furthermore, they are too complicated to be used in practice. Most

engineering applications typically use approximated values for these

quantities. In Table I some possible approximations of g and 1-e
together with the associated errors are given.

Table 1 Damping ratios and the approximations

approximation of approximation of 
2

S sh() & error 2v-
2  1 & error I-2 /2 & error

.001 1.0000005 0.% 0.9999995 1 5e- 5% .9999995 0.0%

.01 .0100001 1.6e-5% 0.99995 1 5e- 3% .999995 0.0%

.05 .0500208 .042% 0.9987492 1 0.125% .99875 -8e-5%

.1 .1001667 .167% 0.9949874 1 0.501% .995 .00126%

.2 .201336 .668% 0.9797959 1 2.020% .98 .0204%

.25 .2526123 1.04% 0.9682458 1 3.175% .96875 .0504%

.3 .3045202 1.51% 0.9539392 1 6.060% .955 .106%

In this Table, the largest error appears when - 2 is approximated by

unity. If the value of E is less than 10% , then tne error is no more than

0.5% . If the value of is less than 30%, then this error is less than 5%.
2If we approximate 1 - /2 by unity, then the error is no more than

0,106%. These errors are tolerable in most engineering applications.

We define a structural system to be lightly damped if the absolute value

of the damping ratio for the system Iq less than 30% The damping of most

civil engine -rlng structures such as buildings, bridges, dams and towers is

usually !ess than 10%. Metal structures nave even less damping. Theoretically

speaking, for lightly damped syst.ems, we have the following equations

2
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/--2 --e - g 2

exp(g) 1+ g+ 9 2 (1)

ch(g) 1

This paper is limited to the discussion to such systems.

COMPLEX DAMPING OF LIGHTLY DAMPED STRUCTURES

We first describe the complex damping ratios of lightly damped systems.

Consider an MDOF system. For each virtual mode of the system, we can have

an equation

+ (a + Jb) u + 2u = 0 (2)
n

The characteristic equation of (2) is given by

A 2 + (a + jb) A + w2 = 0

with

A - [-(a+jb) ± ((a+jb)
2- 42)) 1/2]

2 n

=a+Jb a++Jb 2 )1/2]n 2wV 2w -1 ]
nn

S a+jb ) ( *a+jb ) 2 1/2 (3)

n n

Using (1) for lightly damped systems, we have

tabJ] <1 (4)

and
+ ( a+jb )2 1/2 1 a+Jb 2 (5)

2Wj2 2w
n n

Without loss of generality, let us first take the positive sign of

+ ( a+jb 2 )1/2
2w j )

n

in Equation (3). Then we have

[1a+Jb 1 a+jb j(=J ( a j)+ t+ J)n 2w 2w (6 )
n n

By using (1), we have
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ajb 1 + (a+Jb J) 2  ,exp(Ja-b )2W 2 2w ) +2wn n

a -bexp( J-2  exp(-2)
n n

a 1 a 2 -b
[1+ J 2w 2 ) I exp(2w)

n n n

a + (1- ) 2) 1/exp(--b_

= 2w 2w 2w
n n n

It follows that

A = 20 J1 +  a 2 - -2 exp( -b
n[ 2w 2w )1/2J-

n n n
a -b a 21/2 -bexp(-)w n +J( 1 - ( --- ep-__-( 7

2w 2W n , , 2 w (
n n n n

Now take the negative sign
a+jb 2 1/2

2wn

In Equation (3), we have
a b a 21/2 b

- exp( J - ) 2w - ex,- --- )w (8)w 2W n2wP(& )

n n n n

Combining Equations (7) and (8), we have

a T<b. a 2 1/2 9bA=-fc -exp( w)(Jn ±_ J( I-(-- --j) exp(-- -- )Wn  (9)

n n n n

By comparing the Equation (9) with the standard form of A,

A- w + j-2
we have

a
aw - = (a=2 w ) (10)

n
and

exp( T. b = W
n

By using (1)
Tb b 2 1/2
2- -2w

n n
Then

b2w b 2 n (11)

n

In Equations (10) and (11), a and b are associated with the Ith virtual

mode of the system. By assigning to a and b some proper subscripts, we
th

have, for the I virtual mode of the system,
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ai= 2 iwn

i ni

(12)
bl= 2 <Ii i

and

A= 1 9 expC< ) w n± exp(< I) w (13a)I - lx ( I) ni - ni

Sometimes, it is convenient to approximate A by

A I= jw exp( g± j ) (13b)I n

If we define the I th complex damping ratio of a lightly damped system by

d
2 - = j (14)

ni
then we can make the following statements.

Theorem 1. For lightly damped MDOF system, The complex damping

coefficient of the Ith virtual mode is

I g I+ I <t ) n1

where the real part of the complex damping ratio, g C Is the traditionally

defined "damping ratio", I , i.e.

real (d

2 w,n|

the imaginary part of the complex damping ratio, C C is associated with

the change of undamped natural frequency w I from the zero-damping

frequency w , i.e.
ni = exp( ; ) w1 .

Theorem I indicates that, for a lightly damped system, we can treat the

real and imaginary parts of the complex damping ratio (or complex damping

coefficient) separately. The Theorem is useful in energy analysis of real

damping and imaginary damping.

THE LINEAR PROPERTY OF LIGHTLY DAMPED SYSTEMS

For lightly damped systems, the damped natural frequencies are

approximately equal to the undamped natural frequencies. That is, if the

value < is sufficiently small, then

exp( < ) 1 1

and W, = exp(I ) w w (15)
3CI n -



Equation (15) says that, if two lightly damped systems, H and H , have1 2

the same mass and stiffness distribution, then

A(1 )1  z A 1(2 )

IM IM (16)

and
(1) (2)

A 11A , I=1,...2n (17)

To simplify the notations, we arrange the system eigenvalues in the

following order

L1 A 2 n

so that their corresponding natural frequencies satisfy

WA :5 W S.......S W.
1 2 n

For proportional systems, we now have the following lemma.

Le-mm 1. If a lightly damped system H has proportional damping C whichc

can be represented as the sum of two proportional damping C and C2C

i.e.
C= C + C
C 1C 2C

then, for the subsystem H and H , we have

A = A( C ) + A(
20

Re Re Re

i.e.

A = A(IC) + ;kA( I =1...2n (18)
iRe iRe iRe

and

A A(IC) ; A(2C)

IM IM Im

I.e.
A ; A ( 1) z k(2)  i = 1,...2n (19)

Lemma 1 says that, for a system with proportional damping, if it can

be split into two subsystems both with proportional damping, then the

imaginary part of the elgenvalues of the original system is the sum of the

corresponding imaginary parts of the two subsystems. In other word, the

damping ratios possess the following relationship

=C ) 1 = 1 ...... 2n (20)
I I

where the superscript (.) stands for the corresponding system (.}.

Lemma 1 can be used in damping identification. When dampers are added to

a structure, the damping ratio of the structure is changed. By using
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equations (18) and (19), we can determine the damping ratio of the

modified structure. In a later section, some examples will be given.

Lemma I can be extended to systems with general non-proportional damping.

This Is described In the following Lemma.

Lemma 2: For any lightly damped system with damping C, let H be the state

matrix. If we separate the system into two subsystems H and HN , then

we have

A A (P )

Re Re

i.e. A AM i = 1, 2, ... 2n (21)
ie iRe

and A A ( P ) z A (N )

Im IM IM

(P) (N)

I.e. , I = 1, 2, ... 2n (22)

This lemma is easily understood by noting that systems H and H have

the identical damping ratios for their modes, and almost the same natural

frequencies per each mode.

Theorem 2. If the damping matrix C of a lightly damped system H

can be represented by the sum of two matrices C and C2, I.e. C C + 2

then, for subsystems H and H , we have
1 2

A A A( ) + A (2 )

Re Re Re

I.e. A A + k(2 ) , I = 1, 2 .... 2n. (23)
i Re iRe (IR (

and A A A
In IM IM

I.e. A A (1) ' (2) I = 1, 2. ... 2n (24)i .kII lira urn~m'

PROOF.

Let C =C + C and C = C + C. Then we have
1 IP IN 2 2P 2N

C =C + C2 = (C +C ) + (C + C )

1 2 1P 2P IN 2N

According to Lemma 2,
(IP + 2P) A(IP) (2P)

A A -A + A
Re Re Re Re

A(1) + A(2)

Re Re
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The second half of the theorem is obvious.

Corollary 1. If lightly damped systems H and H have same mass and1 2

stiffness distribution and damping matrix C2 of H is 3 times of C of H1,2 2 1 1

(i.e. C 2 = 1 C1 ), then, for H and H 2 we have

A (1 ) A (2 )( 1 )  (2 )

i.e. 11 z A2) , i = 1, 2, ... , 2n. (25)

A(2) z 3 A" )

and Re Re

I.e. A ( z i = 1, 2, ... 2n. (26)I . e.1 Re IRe '

APPLICATIONS AND EXAMPLES

Example I

Figure 1 shows a structure with 3 DOF. Before dampers are added, the system

has the following damping ratios

Table 2 Damping Ratios of the Base Structure

Mode I II III

damping ratio .0102 .0087 .0079

By adding dampers to the base structure, the damping ratios are changed.

Since the damping ratio of a damper is directly related to the physical

parameters (such as the loss modulus and the volume of damping material),

the ratio can be calculated when these parameters are given. Suppose we

have already obtained the corresponding damping ratios contributed by

the dampers (first row of Table 3). Now we would like to have the damping

ratios of the structure after the dampers are incorporated. It is easy to

see that the system is still lightly damped. So from Theorem 2 we can

calculate the damping ratios using the linear property. The results are

shown in the third row of Table 3. The last row in Table 3 gives of the

experimental data to be directly compared with the calculated results.
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Table 3 Calculation of damping ratio

mode I II III

9add .275 .1010 .0744

9base .0102 .0087 .0079

calculated .2852 .1097 .07519

tested .2970 .0877 .06200

Example II

The second example is concerned with the damping matrix decompositions.

Thus far, there are three popular damping matrix decompositions. (1). The

Clough-Penzien decomposition

C = C + C
P N

This decomposition gives a proportional damping matrix C . Consequently

all the damping ratios of the system can be calculated.

(2). The pure proportional and non-proportional decomposition

C = C + C
d o

This decomposition gives the pure non-proportional damping matrix C 0
0

(3). The real-imaginary decomposition:

C = C+ C
r I

This decomposition gives the matrix C and the matrix C whichr

provide the real part and the imaginary part of the complex damping ratio

respectively.

Although decomposition (3) is in great use when dealing with energy

analysis, its computations are intensive. With the help of Theorem 2

we can use the formula

C = C + Cd

to approximate C = C + C . This Is a simple approach to obtain C
r I
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matrix.

Suppose we have the following M-C-K system,

2 -1 -1 0 180 -48 0 0

M=1, C - - -1-1 and K -48 136 -88 0
1 -1 4 -2 0 -88 130 -92
0 -1 -2 5 0 0 -92 92

Since

408 -144 -92 92

CK -324 544 -352 0
-132 -440 992 -552

48 40 -732 644

we know that the system is non-proportionally damped. Using the pure

proportional decomposition, we have

3.8507 -.2994 .0301 -.3307

-.2944 3.6314 -1.1827 -.5486
d .0301 -1.1827 3.6328 -1.3303

and -.3307 -.5486 -1.3303 2.8851

-1.8507 -.7006 -1.0301 .3307[ -.7006 -.6314 .1827 -.4514
0 -1.0301 .1827 .3672 -.6697

.3307 -.4514 -.6697 2.1149

The elgenvalues of the system are given by

-2.5182 ± 16.5207J

-1.8893 ± 13.6937J

-1.9617 ± 9.8809J

-0.6307 ± 3.0123J

their corresponding complex damping ratios are

.1507 ± .0098J

.1367 ± .0066J

.1947 ± .0063J

.2050 ± .0100J

The maximum damping ratio is about 21%. According to Corollary 1, if the

damping matrix is reduced to one tenth of the original value, then the

damping ratios will be approximately decreased to ten times smaller.

Therefore the maximum damping ratio is about 2%.

In Table 4 we listed the results of A(H ) and O(H ) from C - Cco co d o

decomposition as well as the results from the system of C/10 damping.
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Table 4 A(H ) and O(H

CO CO

Original system System with C/10

.0179 ± 16.7148J .0000 ± 16.8771J

g -.0323 ± 13.8242J .0000 ± 13.9147Je A ..
n

a .0148 ± I0.0737J .0000 ± 10.0098J
1
Ue -.0004 ± 3.0769J .0000 ± 3.0468J

C d 1x le-4x
0 am m
p p .1507 ± .0098J -.0100 ± .9811J
1 5
e n
x g .1367 ± .0066J .0216 ± .6170J

r
.1947 ± .0063J -.0136 ± .6156J

.2050 ± .OOOj .0012 ± .9824J

The numerical results in Table 4 show that the approximation is

satisfactory. This is particularly obvious for the small damping ratios.

CONCLUDING REMARKS

Most engineering structures can be classified as lightly damped systems.

Dynamic analyses of these structures could be different from and simpler

than those of heavily damped systems. The nice linear property of the

lightly damped systems presented in this paper is such an example. A

further application of this property can be found in damper utilization

design (see Liang et al 1991).
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Active Vibration Suppression via LQG/LTR;
Analytic and Experimental Results for the

PACOSS Dynamic Test Article

Russeli N. Gehling t
Martin Marietta Astronautics Group

ABSTRACT

Future large space systems (LSS) will possess high modal density at low
frequencies, and mission performance requirements will necessitate control
bandwidths encompassing these modal frequencies. This situation has potential for
adverse controls/structure interaction (CSI) detrimental to system performance.

The Passive and Active Control of Space Structures (PACOSS) program has
investigated the design, analysis, and verification of passive and active damping
strategies applied to LSS. This paper discusses the results of an experiment in which
a Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) design
technique was applied to the PACOSS Dynamic Test Article (DTA) for the purpose of
high authority vibration suppression.

In general, the LQG/LTR control demonstrated high sensitivity to design model
accuracy. Actual performance was significantly less than predicted, even though the
control design utilized an accurate test-verified model.

The results of this experiment indicate that analytic LSS models which are quite
accurate by structural dynamics standards may be insufficient for use as design
models in modern control algorithms. However, passive damping designed into LSS
flexible modes will simplify the active control design and implementation in terms of
sensor/actuator requirements, design model order, real time computing requirements,
and overall system robustness.

* P.O. Box 179, Denver, CO. 80201, Mail Stop H4330, phone: (303) 971-9388.
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INTRODUCTION

Future large space systems (LSS) will possess high modal density at low
frequencies. Some missions envisioned for these systems require rapid retargeting
and precision pointing which lead to control bandwidths overlapping many closely
spaced structural modes. Therefore, some means of structural vibration control will be
necessary to avoid excessive excitation of the flexible modes. Passive/active vibration
control is the most realistic and efficient approach for vibration suppression in such
dynamically challenging systems

The Passive and Active Control of Space Structures (PACOSS) program
investigated the design and implementation of passive and active vibration
suppression on structures typical of many LSS configurations. This involved design
and fabrication of the passively damped dynamic test article (DTA) possessing high
modal density between 1 and 10 Hz (Fig 1). Also, an active vibration control system
was designed and implemented. A brief description of the DTA hardware and test
setup is presented in this paper, while a detailed description of the DTA is given in
Reference 1.

Previous investigations with the DTA demonstrated good agreement between
measured and predicted performance of the passive damping design acting in concert
with local direct velocity feedback (LDVFB) as discussed in Reference 2. However, the
LDVFB was a relatively low authority active damping approach which did not
dramatically improve the DTA line of sight (LOS) performance. Optimal control in the
form of a Linear Quadratic Regulator (LQR) approach allows for efficient use of
actuator capability in the design of high authority vibration control. The loop transfer
recovery (LTR) technique allows for estimator design which recovers the desirable
characteristics of the LQR full state feedback design. These characteristics make the
LQG/LTR design algorithm attractive for designing a multi-input multi-output vibration
controller for the DTA.

This paper discusses the application of the LQG/LTR control design algorithm to
the DTA LOS vibration suppression problem. Analytic and measured results i,,
presented to show the degree of agreement between analytic predictions and actu'l
performance. Conclusions regarding the practical application of LOG control ior
vibration suppression and the role of passive damping are drawn from the test resu.t-,;
and analytic studies.

HARDWARE DESCRIPTION AND MODELING

The PACOSS DTA is a laboratory testbed for passive and active structural
vibration control implementation and testing. The DTA possesses 23 major structural
modes between 1 and 10 Hz, many of which are global in nature. Uoing the method,
described in Reference 3, passive damping levels between 5% ann 10% (modal
viscous) were designed 'ito the flexible modes which contribute to LOS error. The
analytic model was then verified through a comprehensive modal survey (Reference
4). The DTA is suspended from three pneumatic suspension devices which have ver,
low stiffness and virtually no friction. The suspension arrangement gives the DTA sie-
rigid body modes below 0.3 Hz. The overall test setup is shown in Figure 2.
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Figure 1 PACOSS Dynamic I-est Article



Figure 2 OTA Test Setup



The active control system includes reaction mass actuators (RMA), inertial
velocity measurements, and a digital control processor. Ten RMAs with collocated
Sundstrand QA-1400 accelerometers and linear velocity transducers are mounted at
the locations shown in Figure 3. Also identified in Figure 3 are the locations of three
additional non-collocated QA-1400 accelerometers. Inertial velocity is obtained from
the 13 accelerometers by integrating the signals with bi-quad filters as discussed in
Reference 5. Thus, the control system involves 23 inputs (10 collocated inertial
velocities, 10 collocated relative velocities between tha reaction masses and DTA, and
3 non-collocated inertial velocities),and 10 outputs. Contrc! laws are implemented via
an Optima/3 digital controller capable of handling up to 32 inputs and 32 outputs. In
the PACOSS experiment, the processor rpn the LOG/LTR control law (36 states, 23
inputs and 10 outputs) at a 400-Hz sample rate.

Due to their 1.5-Hz natural frequency, the RMAs cannot contro the lw
frequency rigid body dynamics of the DTA. Therefore, a relative LOS was defined to
exclude rigid body modes from the control system. Thus, the controller acts strictly as
a vibration suppression system. Figure 3 identifies four disturbance input points on the
DTA. These disturbances cou!Y be from maneuvering thrusters or onboard
equipment. The relative LOS response to these disturbance inputs was taken as the
performance metric to be minimized by the controller

Y + Antenna

z;.It#L.nce nput

;Disturbance ;nput

PPoint 1 (78Z)

Disturbance Input / Disturbance Input

~Ring Truss

CP ) (D CPO X Disturbance Input Points

CP CP(E)* Sensor Actjator Pairs
o Non-Collocatel Sensors

Disiurba, ice Input o Actuator Un.I #'s
Point 4 (80Z) ua Equipment Plaitform

Figure 3. DTA Controi Locations

: ,ddition t3 t a active control instnumentation. 182 Kistler model 8632
accelerometers were installed on the DTA for acquiring modal survey data. The large
number of cables seen in Figure 2 are primarily from thlese modal accelerometers.



Tests with and without the mnajority of cables attached showed that the instrumentation
cables had no effect on the flexible modes ot the DTA. The LOS measurement was
synthesized as a linear comrbinatior: of selected measurements from the Kistler
accelerometers.

A detailed finite element model of the DTA with over 10,000 degrees of freedom
kCOF) was developed and test verified during the first phase of the PACOSS program.
The deta,!ed model' was reduced (via a Gu~yan reduction) to 357 DOFs, and the modes
doterm'rned fromn this reduced model. Table 1 compares the analytic and measured
naturall frequencies and damping ratios and lists the diagonal term of the orthogonality
product between the predicted and identified ric~jz up to 10 Hz. The modes retained
in iho control design rnodei (0D-LrM) were those possessing significant observability or
controllability when the control points, sensor points, disturbance input points, and
tS C ~ TnG~~Ii U eDM includes all gionai modes ana a few

appendage modes with frequencies below 10 Hz.

Tarle 40 !dontifi~d and Predied Modes from DTA Modal Survey 3

Retained in
i vio<d' # Measureli Analytic X-orth control design

_____I_____ _____ diag. model
f..~ H~z) ~ (f f(l-z) N_ _ __ _ _

1.03 I29 11.04 48 0.97
~ 1 3.4 1 1.06 4.9 0.98

3 259 3.9 M.8 2.8 0.98 X
3.0 3 7.4 it 3'.7 5.9 0.51

33.13 f3.5 3.22 5.0 0.40
. 5.10 3.37 5.3 0.71 X

1345 8 .7 13.54 7.4 0.74 X
53' 3.75 4.9 0.98 X

'+- 1-7. 38 10.1 0.98

4-6 54 1 .43 6.1 0.84 X
I .6 4.46 3.0 0.89

5.08 i C 4.86 11.9 099 F4 5.27.1 1.005.78 5. 5.02.4
5,52.6 09

5,8 5.~ 85 2.5 0.98 X
9 . 00 3.3 0.96

9, -5 C 9.7 0.98 X
26/ 6.0 0.67X

) .35 7.2 0.99 X
4 9.5 7.1 0.93 X

11 1.4 0.96
1 ~ 1 1.4 0.94

/ArK-iyfi( dzi;-rpnc. to, mc'des 1 through 18 computed using VEM properties
-1 ., modes 119 tiougt-l 23 computed using VEM properties at 9 Hz.



The conelation of the analytic and measured results was excellent in terms of
frequency and damping ratios. The orthogonality diagonal term indicates agreement
in terms of mode shape and should be greater than 0.9. As listed in Table 1, the mode
shape correlation is quite good for most of the flexible modes retained in the CDM with
the exception of modes 6, 7, 10, and 19. Modes 6 and 7 are antisyrnmetric global
modes which involve the box truss, tripod, and solar arrays. Modes 10 and 19 are
more local in nature, mainly involving the antenna.

Review of component modal surveys (Ref 6) indicated that the fundamental
constrained interface mode of the box truss was about 6% higher in natural frequency
than predicted. In an effort to evaluate the effec on the DTA system modes of
matching the box truss constrainad iriterface fundameritai frequency, the 1/8-in.
diameter x 0.014-in. wall box truss members were stiffened by 20%. This increased
the box truss constrained interface fundamental frequency by the desired 6% to match
the component test results. In this case, the fundcamental mode shape of the box
remained essentially unchanged. The DTA model was recoupled with the stiffened
box model, and the system modes computed.

Table 2 lists the results for the updated model CDM modes. Note the negligible
differences in natural frequencies and damping ratios between the two analytic
models for all but modes 6 ad 7 (see Tab!" 1). These modes show a small shift
frequency but a ,elatively large change in damping ratio. Agreement with the
measured values, while remaining quite good, improves somewhat for mode 7 but
degrades slightly for mode 6. The ortnogonality product diagonals for modes 6 and 7
between the measured and updated analytic modes are greatly improved as
compared with the original DTA model. These results indicate that accurate prediction
of closely spaced modes can be quite difficult. Here, a 6% change in a substructure
modal frequency produced a major change in two very closely spaced system mode
shapes. The task of predicting arid identifying closely spaced modes in dynamically
complex structures indeed requires extremely accurate finite element models.

Table 2 Measured and Analytic fn and r for DTA Modes Retained In CDM

[,,Aode # Measured Updated X-]h

f n (Hz) (%) fn (Hz) j (%) diagonal

3 2.59 3.9 2.66 2.8 0.99
6 3.30 5.1 3.47 4.2 0.93
7 3.45 8.7 3.51 8.6 0.95
8 3.73 6.3 3.70 4-8 0.98

10 4.56 5.8 4,43 6.0 0.82
13 5.08 12.0 486 12.1 0,97
15 5.78 1.6 5.85 2.6 0.94
16 5.82 2.1 585 2.5 0.98
18 6.55 9.5 6.41 9.9 0.99
19 8.87 7.2 -7.27 60 067 1
20 9.20 7.0 .41 , 71 0.99
21 9.61 6.4 5-8 2 .93



Th'qse observations indicate that DTA modes in the 3 to 4-Hz range are very
sensitive to the relative stiffnesses of the box truss, tripod, and solar arrays. Stiffening
the box truss seems to have improved correlation, but altering the tripod or solar array
model- may have similar effects. The DTA model with the stiffened box truss was used
as the evaluation model for control performance evaluation. However, the original
DTA model was used to design the LQG/LTR control since it was the best available
moaei before conducting the final open loop modal survey in the 10 actuator DTA
corfiguration.

LQG/LTR DESIGN APPROACH

Modern state-space control design techniques allow the analyst to
corfvenienoy model and analyze high-order, multi-input, multi-output (MIMO) systems.
One branch of modern control theory well suited to the DTA vibration suppression
problem is optimal LOG control. The LOG approach provides a fram-'work in which
LOS jitter suppression may be traded against active control effort to determi n! 'ho
most efficient compensator design for the required performance. The complete
LQG/LTR desgn algorithm Utilizes standard LQG design techniques (optimal regulator
or estimator design, depending on the problem), and then computes the companion
estimator or regulator design such that the singular values of the system loop-transfer
,,ncrx approach those of the full-state design case. This is known as "recovery" of
loop-tranzfer functioris (LTF).

The LOG control structure is shown in Figure 4. It consists of a Kalman-Bucy
filter (KBF) with gains, Kf, designed to estimate the states of a nominal plant model,
G(s', airr a fuil-state, I)near-quadratic regulator, Kc. Figure 4 and the nomenclature
used here were taken frcm Reference 7. Referring to Figure 4, the following properties
for the LOG control structure may be stated:

1) The LTF obtained by breaking the LOG loop at point (i)* is the KBF LTF
C(DKf.

2) The LTF obtained by breaking the LQG loop at point (i) is GK. It can be
made to approach C(DKf pointwise in s by designing the LOR in
accordance with a "sensitivity recovery" procedure due to Kwakernaak
(Ref 8). This assumes G(s) is minimum phase and that m k r.

3) The LTF obtained by breaking the LOG loop at point (ii)' is the LQR LTF
Kci B.

4) The LTF obtained by breaking the LOG loop at point (ii) is KG. It can be
maod to approach K¢¢D pointwise in s by designing the KBF in
accordance with a "robustness recovery" procedure due to Doyle and
Ste!r (Ref 9) This assumes G(s) is minimum phase and that m < r.
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Compensator K(s)

L

Plant Model:
n m

:x= Ax+Bu+t; XE R , u E R

y = Cx+i; yE Rr

satisfies:
G(s) = C4(s) B

with:

(1(s) = (S In - A)
1

where:
n = number of plant states
m = number of plant inputs
r = number of plant outputs

= plant noise (white, zero mean, random process)

T = measurement noise (white, zero mean, random process)

Figure 4. LQG Control Structure

As stated in Reference 7, "The significance of these four facts is that we can
design LOG loop-transfer functions on a full-state feedback basis and then
approximate them adequately with a recovery procedure."

The appropriate approach for the DTA is to design Kc via the LOR technique
and then compute Kf to cause the singular values of the loop-transfer matrix, KG, to
approach those of the full-state feedback case, KcDB. The procedure for computing
the KBF gains is described in Reference 7 and summarized below:

1) Append dummy columns to B and zero rows to Kc to make C@B and
Kc(DB square (r x r). CDB must remain minimum pnase.



2) Design the KBF with modified noise intensity matrices:
E(:T 0Mo + q2BBTJS(t -T)

E(TrmT) = N0 6(t - tc)

where M0 , No are the nominal noise intensity matrices and q is a scalar
parameter.

Under these conditions (Ref 9):
(I/q)Kf -4 BWNo- 1 /2 as q -- 00

where W is an orthonormal matrix.

This calcuiation of Kf results in:
K(s) G(s) - Kc(B as q -

The design procedure for a MiMO system involves calculation of Kf with
successiveiy vrre:oa ng ",,s es of the fictitious plant noise, q. As q approaches infinity,
the Singuiar values o, KG will approach those of KcP8. However, the gains in Kf will
become quite iarge, wnic; is generally undesirable. Thus, a designer will wish to use
the smailest q for which the LTF of KG acceptably matches that of Kc(DB in the
bandwidth of interest.

An extension of the single-input, single-output Bode plot for MIMO systems is
• . s!'gular value (SV) Bode plot. Comparison of SV Bode plots for KG and Kc(DB is

9-- i ndi cator of the loop-transfer recovery achieved for a given value of q.
Therefore, SV Bode plots rnav be used to determine the convergence of KG to Kc(DB
over ie bandwidth of interest.

The desAgn goal of the LQG/LTR control algorithm for the DTA was to
minimize the LOS response to siew commands and noise disturbances at knowr input
points. The approach taken for app!ication to the DTA was to design an optimal
regulator based on ,ulI-state feedback and then recover the loop-transfer functions at
khe disturbance and slow command input points. Thus, as discussed in Reference 10,
the desira-e characteristics of the LOR full-state feedback design are recovered by
the estimator.

Calculation of the LOR gain matrix involves selection of state and control
weightiig rnatrieis, 0 and R. These required matrices were determined as follows:

=ILOS-Y philosyLOS= I ~ pils O [TLOSrTLOS-Yj philosy 0] oi

phlicslx = riode shape coefficients defining LOS about X-axis
phcsy = mode shape coefficients defining LOS about Y-axis

= generalized modal coordinates

QV A-10



Minimize:
+TF~ T TLOS;I iyTLOS1 T rR1LosT'"QLOS+ u [Ru 1 = x'TLS]j Sx+u T A

Let:
R = 1 (10 x 10)
0 =TLOS'jiTLOSQ

The magnitude of the scalar 0 is then varied to achieve the desired
performance. Once the desired LOS response is achieved, representative
disturbances and maneuvers are input to the ful .state feedback closed-loop
simulation to check if actuator stroke or force constraints are excPeded. If such limits
are violated, the magnitude of Q must be reduced, and Kc recomputed.

After an acceptable LQR design is obtained, the KBF gain matrix is
computed using the LTR method previously described. The input matrix, B, used in
the loop-transfer recovery procedure includes the control and disturbance input points.
Note that the number of points used (number of columns in B) must be less than or
equal to the number of sensor measurements (number of rows in C). After each
computation with a given value of q, the SV Bode plots of KG and KcDB are
compared. Once convergence (in a qualitative sense) is apparent, the control design
is complete.

Following several iterations, guod performance was achieved with a state-
weighting parameter, r, of 109. The LTR procedure was then performed for varying q.
This process was conducted using the matrix algebra software package, PRO-
MATLAB. and the Robust Control Toolbox function "ltru" (Ref 11). Figure 5 shows the
convergence of the SV Bode plot for three values of q. The plots show nearly perfect
agreement tor q = 100. Using this value, the largest gain in the KBF matrix was 9600,
which is larye but proved to be acceptable.

The closed-loop frequencies and damping ratios for the initial LQG/LTR
design coupled to the DTA CDM are listed in Table 3. Note that the LTR procedure
resulted in 'everal overdamped ,-a! porc,-, far in *h.- lft hif 'lpn, as well as several
very low frequency real poles.

it was necessary to remove the high-frequency poles from the design to
avoid aliasing problems when running the controller at 400 to 500 Hz. Also, since the
0.05-Hz bi-quad integrator poles were not included in t:,e CDM, the low-frequency
compens.tor poles could couple with the analog integrators used for the inertial
velocity measurements and causP stability problems. Therefore, the compensator
poles less than 0.5 Hz also had to be removed from the controller design.

in attempting to reduce the controller order, it was found that the low-
frequency poles could not be removec. from the compensator without causing
instabilities when coupled with the DTA structural model. Therefore, the LQG/LTR
design was repeated, but with a spectral shift appK:ed to the Kalman filter design such



9t.at the filter poles were required to be greater than 0.5 Hz. This procedure resulted in
a ccnp e risat or whlich inaeed possessed no poles below 0.5 Hz, yet had periormance
near!y equivalent to the original desiqnr.

A redu)Ced-order compensator was then obtained tram the full-order design1
Ly e~oigcompensator modes which had relatively small observabity ano
c--,)ILinty asdtrmined from a balanced realization of the compensator fcrm, :d

ep PRO-MAT[ AB3 Robust Control Toolbox function, "obalreal" (Ref 1;1 T s
_.,,n ren-oCVed mnost c" the nigli-freqiency onmpensator oodes and izveril othp.

~v n~mortntpoles. A tew remaining poles in the 100 to 400-Hz range were.
7'v , a m',odal trincaton, and the final compensator order was cut to 30 states

wijmujm frequency near 1 H-. Figure 6 shows the SV Bode plot for ful'-sa. _-V
tul-,r Co! _nr ator, an educe-order compensator designs N-te a

IMm singular va.iues agree near ly identically across the three ca ses

1,n additin to thie 30-state LQGi'LTH compensator, thrce second-orcier bh-
egraors oreappendled to the controller to derive nenlial velocity from the

~ sctedQA 40 acelrometer measurements.Thstecoroe
-'e x)tm~~ volved 36 states with 23 inputs and 10 outpuLtS. l,

2 asable toC runl the problem at a :ample rate of 400 Hz.

Table 3 Itial OTA LQG',LTR Design Results

CarllxPoles ____Real Poles
'Z) Typ fn'~ (Hy TypeL,, (rad/s)

.400 S 13. 43 7.12 1E -1.92 x 10-4 -2.2 7 x 103
0'~ S~ .5 7.3 F1 -1.9/ X10-4  -2.67 x103

i7 7O t33 6.25 F -2.00 x~ -3.17 x 10"
J, j ~ ~ 3.90 15.40 E -3.22 x 10-4 -3.51 x10

4 4 16.05 F 1-3.84x10 4  -8.85 xi0
-0 y99 X 104 4F ~ -8-86 x i0 4

IL 4 7  l.9 F -9.99 X10 4  -8.88x10
1.07 IE 4.82 32.12 1 E _-9.99 X10-4  -8.97xi104
1- C G E"7 1 5.2 j29. 12F

I5 - - I - -9.99 X 10-4 -8.97 x 104
b 183.90 1 A b.t 599 04 -91 0

3 K~~A .85 2.55 F 999 bA -. 104

1,37709  A 15.85 270 -1.O0 i 0-3 -9.43 xi0
5. 1h2 A 86 28 E -1lO0x 10-3 -9.46 x ',04

D ~ A 73145.26 E -1.00 x 10 J -9.53 x 1'
5 A) 1, 34 ~ ) F -7.96 x 102 -9.63 x 10 4

50A 32  .23 E
5 , A 2 (4 113.87 F NOTE-

Ury 9 88 7 .70 E S =Suspension Mode
Ky'~ 00 2.5 ' A Actuator Mode

0 103 C !C>0 F F - DTA Flexible Mode
.- 16--..9 J= F- 6_1___3_EE__Esimaorod
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The analytc LOS frequency response function !"F RF) for a Y,,ew o~v
't he Y-axis isshown in Figure 7. The four traces show oppn-loop, clore

uh state feedback, closed-loop with the reduced-order stale estimator des;gned ''

c oupled to the CDM, and the same reduced order compensator cocldt
D-1i model The performance of the reduced-order compensator design or,~
sv.ry nioar, that of th3 full-stAte feedback case, thereby showing the Success :vi tl'>

ard reduction design process. *The FRIFs shown in Figure 7 indicate a IC 0o 1 8
edc!cion in the root mean square (RMS) LOS jitter level based on response to N,,

<cebetween 2 and 10 Hz. Another demonstration of the predicted c'untrc,
tecrveness is seen in the simulated slew response shown in Figure 8. Notie--Vi"

-e passve damnp ng des gned nto the DTA, only a few modes are sign'ficar
7),,i ;oop slev, response The active control system serves as a highanhtyc~

-''y c em nate thf response of these modes Together, these FAFs anid
7, ~e sh1)owv the dramnatic vibration suppression achieved by the moderr opt!.,'

s ic g, oproach ad the effectiveress~ comn~ed pass ve~actvec

A dra~wback to the LQR method is sensitivity to modeling errors. W
car, be evaluaj'-ted for stability robustness and bandlwidth, actua' p e r'ar iv

Siydeo-raded bjy differences between the --nalytic design mod,- d''. t-,
'iE s, ,C Recall that two DTA mod'rls were used in Ih s study: the prelest r

wcn the CUM was Created, and the evaluation model, consisting of all rncd

the~~ upae -4e4 .' inss ._ode Th
* - alytic resujlts for both these models and presents corresp-cDo. -1'

i )S Y1P681. I Q(iilTR Uksign

OloedLop~llModel1
- Closed Loop--CDM

-Ciosed LOOP- FLIP State Feedbackt
Oper Loop

Figure 17. Analytic DTA LOS About Y-Axis
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Figure 8. Relative LOS Slew Response, X-Axis

RESULTS

Open and closed loop FRFs were measured using burst random excitation at
disturbance input points 68Z and 72Z (see Figure 3). Measurements were made for all
the points which participate in the LOS, and the experimental LOS FRFs were
computed as a linear combination of the actual measurements. Figure 9 shows the
experimental open and closed loop FRFs for the LOS about the Y-axis due to
excitation at point 68Z. The somewhat noisy closed loop response is a result of very
low amplitude measurements being scaled by relatively large terms in the LOS
computatiLr.. The corresponding analytic predictions, based on the original DTA
model including all modes to 20 Hz, are shown in Figure 10. Note that while there is
good qualitative agreement between the actual measurement and prediction for the
open loop DTA, the LOG/LTR closed loop LOS measurement deviates significantly
from predicted between 3 and 5 Hz. The cause of this error was, in part, due to the box
truss component model. When the compensator was coupled to the updated DTA
,,iodel, the FRF shown in Figure 11 resulted. This FRF shows a behavior very similar
to that observed in the 3 to 5-Hz range. However, the overall response suppression is
still less than predicted A rough calculation of the actual RMS jitter reduction achieved
by the control gives 63% versus 74% predicted using the updated DTA model.



LOS-Y/F68z: LQGILTR vs Open Loop
10-3

Frequency (H/.)

Figure 9 Experimental LOS FRF; LOS- Y/F68Z

LOS.Y(F68z: LQG/LTR & Open Loop (Original DTA Model)
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Figure 10 Predicted LOS- Y/F68Z; Original D TA Model
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LOS-Y/I:68,. LQG/LTR & Olixn Loop (analytic)
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Figure 11 Predicted LOS-Y/F68Z; Updated DTA Model

The FRFs at selected control points demonstrated additional problems with the
LQG/LTR design. Figure 12 shows the FRF between 72Z and 0P2, and Figures 13
and 14 show the corresponding analytic FRFs using the original and updated DTA
models respectively. Note the amplification of the closed loop FRIF near 6 Hz.
Apparently, a DTA mode near 6 Hz is being destabilized even though the open loop
modal survey results indicated that the DTA flexible modes in this frequency range
were accurate. As shown by the analytic FRFs, this is not predicted by either DTA
model. Also, the control effectiveness at 3 Hz is much less than predicted. These
observations indicate that the LQG/LTR design is quite sensitive to small differences
between the 0DMV and actual structure.

Finally, Figure 15 shows a measured free decay for open and closed loop
operation. This trace was produced by purely exciting the 2.6-Hz mode; perhaps the
most accurately predicted mode of the DTA. The LOG/LTR control law did successfully
apply a great amount of damping (on the order of 20% modal viscous) to this mode.

!_ .... -'j



DTA FIRF: CP2/F72Z Measured
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Figure 12 Measured DTA FRF; CP2/F72Z

DTA FRF: CP2/F772Z, Original DTA Model
3

2.5-

2-

1.5

0.5 -

LQG/LTR Closed Loop

01
0 1 2 3 4 5 6 7 8 9 t0

Frequency (117,)

Figure 13 Predicted DTA FRF; CP2/F72Z, Original OTA Model

CAA- 18



OTA FRF: CP2/F72Z. Updated DTA Model
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Figure 14 Predicted DTA FRF; CP2/F72Z, Updated DTA Model
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Figure 15 Free Decay of 2.6-Hz Mode
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CONCL USIONS

The open and closed loop res~~itc above demonstrate that closely
spaced tiexible modes can be very ,; a~. .-curate! y predict without resorting to
empirically based mode! tuning. it 1' isg !'hat the greatest degree of
disagreement between predicted and m~~r.ilsoccurs in bands with closely
spaced modes. While one source cf ernr i; u4tified (box truss frequency 6% low),
there are undoubtedly many small di'D~*etwee~l He DTA model and actual
structureD. While these discrepancies wo ,Ic Ir ay e considered insignificant by a
structural dynamicist, they lead to siwv s than predicted performance of a
sophisticated high authority contoi dasg LQG.'LTR. In fact, the control law
amplified the response of even wall mooa , a1s, such as those in the 5 to 7-Hz
range. 1t must be noted that the correlatio' Viaer h pretest IDTA model and the
measured modes is probably much better 'hnco!"id be expected with an actual LSS
which would not be tested until beingj !SS aoC in orbut. Yet the DTA model still fails
to predict critical performance problems whorrleii c to a modern controller. In fact,
the results indicate that the control wotj;(d !Jj-yave been unstable without 'he
passive damnping designed into the DTAI.

The qualitative analysis/tes', ag,-ecam.ern'mcsra by Figures 9 through 11
sovs to validate the analysis. A natursI, ouecsnn is; what if no passive damping were

designed into the OTA? To answer tnis a.", hOf7G/LT design was performed for the
original DTA model with only 0.2% . .'scous damping in all modes. As
demonstrated by the DTA ring truss cornpj,rxxit mnodal survey (Ref 5), and the
PACOSS D-Strut truss discussed in Reere nce "12, this level of damping would be
expected from a tight, precision structurfi '-ti~ no intientional damping designed in.
The results of this design are shown in Figuie 16. Note that the full-state feedback
design achieves performance equivalent that of the damped DTA closed loop
performance. However, when the rerman;ni plant modes are included in the plant
model, a sharp peak near 4.5 Hz is evidel. T!1'- demonstrates that without passive
control. more modes must be considered i e control design, leading to hi gher order
con4frollers requiring more control C '~r- ctuC11ors, sensors) with greater
capability. Also, a higher order plant ---iir control design process more
diff, _ilt .s'nce it is iterative in nature, r 3,urfr m .iin, t from the analyst.

WAhen coupled to the stiffened bo; i ~ 1-n odei an unstable pole at 3.5 Hz
was -,,resent. So, with passive I iTR control was marginally
SUCIC._4-SsfUl, and with iterations and 'muH(.a , could probably be made very
e f 14 cl Ii; But without signifkrt -~'' '; 1oSSive damping designed into the
structutre. the sensitivity of LOG/VPR ,r.,,-r 3riations would have lead to closed
loop instabilities and been very 11' These problems will be present
whe-nPever the ccotroller bandwldt, -z- r i spaced flexible modes.

In summiary an LOG3/LTPR -i ~n control design was conducted for
a dynamrically c'rnp2ex, passive' Pas'>.sive damping allowed many
st!ructural modes to b,,7 mmn; D M~~ forming the 0DM. thereby
groatly simplify~ng 'I;( desici );~y about 80% of the predicted
closed loop performance_' ';; "v t. , vas tiabie and did significantly
suppress LOS vibrations. Sowme'K :;v v:ere amplified, but the relatively



high passive damping designed into the structure maintained stability. The results of
this experiment demonstrate that if high bandwidth, high authority modern control
algorithms are to be successfully applied to LSS, passive damping must be designed
into the LSS from the start.

LQG/LTR Applied to DTA with zeta = 0.002
10 ------

Open Loop

10-3

10-4

Full-State FB Design

0 1 2 3 4 5 6 7 8 9 10

Frequency (Hz)

FIgLre 16 LQG/LTR Design with Nominally Damped DTA (zeta = 0.002)
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H, Control for the PACOSS DTA*

Christopher T. Voth tand R. Michael Stoughton

Research and Technology Department
Martin Marietta Civil Space Company

A I -rb,rac

This paper presents an application of an R,, design technique to the active
control of a passively damped large space structure test article. An active vibration
suppression compensator was designed for the Passive and Active Control of Space
Structures (PACOSS) Dynamic Test Article (DTA) using the 'H,, technique. Ana-
lytic studies indicate passive damping of the structure results in reduced sensitivity
to variations in plant structural modes for a given level of performance.

The control problem was to reduce the X and Y Line-of-Sight (LOS) pointing
errors caused by deformation of the structure due to vibration. External disturbances
at four locations along the DTA excite the vibrational modes of the structure, result-
ing in LOS errors. Passive damping elcments designed into the structure result in
open-loop damping ratios ranging from 0.12 to 0.02. Active suppression of stric-
tural modes is accomplished using 10 proof-mass actuators located on the structure.
Sensors for active control provide 20 colocated inertial and relative velocity mea-
surements as well as 3 noncolocated inertial velocity measurements at locations
along the structure.

The H. approach allowed the integration of performance requirements, robust-
ncss requirements, and other design constraints into the design problem. Explicit

presentation of model uncertainties was important in achieving a closed-loop sys-
tem insensitive to plant variations typical of flight hardware.

Implementation of the result~ng controller on the DTA structure provided exper-
imental vcrification of closed-loop system stability and performance in the presence
of model errors typical of test verified structures possessing high modal density.

An investigation of the relationship bctwecn the act-'. control and passive damp-
ing indicated that passive damping was instrumental in achieving performance and
reduced sensitivity to structural mode uncertainty. Passive damping of the structure
also aided in reduction of the conioiler order fr hardware implementation.

"Performed under Air-Force contract F33615- , _,-C-3222
tp.0 . Box 179, Denver, Colorado 90201, (301) 977-4164



I Introduction

Future scientific, commercial and military oh-cnves in space will require construction
of Large Space Systems (LSS). Proposed operationai performance objectives for these
large structures include stringent pointing accuracies, fast repositioning and short settling
times. LSS will necessarily be lightweight and exhibit a dense, low-frequency modal
spectrum with significant content within the control bandwidth.

Passive and active control methods wili ihkely play important roles in achieving perfor-
mance requirements for future LSS missions. The complexity of LSS structural dynamic.
often result in significant model inaccuracies. Attempts to control similar large systens
through purely active means have often prodccd disappointing results.

The Dynamic Test Article (DTA) is a ground test experiment designed and built as
part of the Passive and Active Control of Space Stru,:ures (PACOSS) program. Thc
PACO V '--,_m was ntated to stat solutions to control-structure interaction
problems by combining passive damping approaches, designed into the structure, with
active control. The DTA was designed as a hardware validation experiment to sAulate
a large pointing system and contains seven substructures representative of future LSS.

This report describes the application of the H,. design method to the active control
of the DTA large space structure expcrimem. Passive damping elements designed into
the structure provide increased open-loop structural damping and vibration suppression.
Active control is used to futher reduce pointing ertrors due to vibrations present in the
passively damped DTA structure.

The 7, approach allowed integration of performance requirements, robustness re-
quirements, and other design constraints into the design problem. Representations of
model uncertainty are used to reduce the sensitivity ( f the closed-lop design to model
inaccuracies. Uncertainties within the control bandwidth prevent the cancellation of plant
dynamics by compensator zeros, resulting in a design which is less sensitive to model
errors. The resulting design is less sensitive to modlci errors typical of flight hardware.

Implementation of the active controller on, thu I)TA structure provided experimental
verification of closed-loop system stability ani nerformance in the presence of model
errors typical of test verified structures with high modal density. Tests results are given
in the form of frequency responses and timc response functions and show good agreemucnt
to analytic predictions for the final design.

An analytical study was performed to in,,cstiate the relationship between the active
control and passive damping. Results wdicate that passive damping was instrumental in
achieving performance and reduced sensitivity to structural mode uncertainty. Passive
damping of the structure also aided in reduction of the controller order for hardware
implementation.

tie algerithm used to sOiVc the H- :owtrl problem is from the MATLAB Robust
Control Toolbor and is descrihcd in Rcfcrcn c 1]. An excellent tutorial description and
overview of H .basCd control dic & n is f !,1CJ hy MacieCjoski 131.



Figure 1: Dynamic Test Article

2 PACOSS Dynamic Test Article (DTA)

Figure 1 is a picture of the DTA. The DTA is a ground based structure for experimental
validation of control design approaches applicable to LSS. The DTA is designed to
simulate a large pointing system. The control objective is to minimize the effect of
disturbances on the pointing accuracy of the structure. The pointing accuracy is defined
in terms of the relative alignment of selected points on the lower truss structure and the
secondary mirror structure on top of the tripod. The DTA is composed of 7 substructures
which represent the following real structures: the lower ring truss represents a structural
'hardback' for the system. The lower box truss structure is a support structure intended
for a large primary optical surface. The tripod system is intended to support a secondary
mirror. The dish antenna is a communications antenna and the linear truss is to support,
sensit"e equipment. Large side-panels represent two solar arrays.

2.1 Dynamic Description of DTA

The structure is symmetric about an axis running between the dish antenna and the linear
trus, and contains 39 modes below 10 lHz. Of these modes 6 are associated with the
suspension mechanism for supporting the structure, 10 are associated with the actuators
(each actuator is modeled as a 2 ' order system), and 23 are structural modes. Many
higher frequency structural modes exist in the system which are not included in the model.
The structure was designed with passive damping elements to provide increased damping
of the structural modes. Damping ratios of the structural modes range from 0.01 to 0. 12.
Si.,,ilar large structures without passive damping have damping ratios less than 0.01.



The 10 actuators are proof-miass ac~tUJItors. % 101 a t I (jI ich stroke. Tv. o a .ta to rs
are located on the tripod, six on the lower vnio JssuLcIture and two on the box trIns>
structure. These actuators work well for vibration ,Ijpp,-cssion; however sin c they rely
on the acceleration of a sliding mass to gem-rnte A~ tuation force, the,. are only efc1*Cti\ C
within a bandpass frequency range.

Each actuator has two sensor-i cotc~itcd v, ! One Is anid accelcronicter, h Itcrcd to
measure inertial velocitv, and the other 111CA'.L reaieVelocity between theC StruIct'ure

anid the proof-miass of the actuator. In addiiin to the 20 colocatcd seu.,ors. thcrc atrc
three nioncolocated accelerometers Nxith ouriJ:-~ Iteigt sr irtial C cll N tics uri

located on each of the two solar arrav-,, anul one on the linea:,r truss.

2.2 Linear Mlodel of DTA

A Linear Time- Invafiant (LTIb modcl o te i,:1) I'\ was developed fromn a tini re e cle:n:
anal> sis anid veriticd with :xtensive m(oAL1 LC stLI of" : the as se iiibled struer UreC The HlOde
formed the basis for the controller des c-i il d P, 0101-C aIce urte thanl WOU d tyicl v
availlable for flight hardware.

The DTA structure contains modes be vond M( liz which have been1 tin natd frowN
the model. In addit in to thie sensor litpuji, hei mode Il h.1s W()o deSiCf nOL1tp ats T

design ouiputs are X and V axis 1-inc-ofl-Si~yhr ()S) pointing errors. T'he LOS ou1Jtput
are measurements of the relative alignmewn, hctw en the lower optical surface and the
secondary mirror structure. The iaxis error r, Measured along an axis aligned with
the axis of symmety of the structure, The N axis error is measured rexive to anl a\is
perpendicular to the ' axis and paing thiu : inh L center oif the solar array panels.

Vibrational miodes of systemi arv cxc lne d bx -4 di tira rlnc inpu1.ts lOCated Onl t1Che b
truss structure. Of the 23 structtural mjodes., on!.i 1 I _ffeet the senrsor incisurene t
Outputs or the LOS Outputs. The mnodel um'u~ in th alAlv control design conta i ned onl\
12 structural modes and had a tti !2S d% iimrle modtes.

Figure 2 shows the maximumn slngpuiar 'uP.of ihe [YL\ model freqluency respionse,
from the 4 disturbance inputs to ea!ch 01 the. A -: I LOS errors.Thefctopas'e
damping elements on vibration sil pro,,s; appa C iPvI1t froml these plots. 1 ew ,harvp
resonant peaks characteristic of theI res;Yo, ns'e '01 U1unlaniped struActure are present.

3 D~esign Problemn

Th'le design problem faciny the , uotlil! c ie .Ni h decribel1Dd aIS 1ChlC1ifc in1C inebe
trade -off between a set Of penfi 0rI'; a rce tn le i esign constraints, an1d en\It\ I
the systemn to model 11h u crtlntisI cp In' .ormance requiremnmt for the, closed.
loop systemn is to nuinimite the rekuxe 'r In both the A and axes resuilmn
from disturbances I i sturbac, ne J JeIIMI L im h rqnne\L 'C o

1 10 Hi.
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Fh('Ure 2: Maximum Singular Values of the Response from the Disturbance Inputs to the
X and Y Axis LOS Errors for the DTA Model.

DI)eign Constrain iS and mo11del uncertainties are:

" actuator displacement liited to ±f I .i inches,

" unniodcled high frequency miodes above 10 Hz,

* 57( uncertainty In structural modeX frequency,

*20 '( uncertainty in structural mode damping,

Addi1tional constraints are related to the Impletmentation of the controller. The con-
troile: iiust be digitally vImplemented at it samiple rate of 280 lHz. The maximum size of
the! co ypensator is limited to 58 ,tates.

4 Synthesis Model

NI u ui viriaihie control design w.kith tuodecrn techniques involves formulation of design per-
formance objectives and other requirements in the form of a slynthesis model. The syn-
thesis model Includes trie mlodei of the plant dvnanhics Awith control inputs and sensor
outputS along with additional inputs an11d OUtputS which are Important in thle desig~n. De-
s ign weighting functions, on selected pI. it Inputs and Outputs are an emnented with the
;Llt mlodel to forml the synthecs m1odel.



With R-, design, performrance renriin.design constraints and rcprescntaI0!i"
of model uncertainties must be included in the syiithesis model. Modlel uncertainuics !I

be re-presented as 'H, -norm criteria based on the small Lain thecoreml". IDeVC10menrI II W

the synthesis model for 'H-, deign is discussed try Boyd I [
Th_,- synthesis model for thle DTA c:ontrol ries'pf is it transfer matrix represenici hs

/1(,s). Inputs to P(.)are separated 'Into a Vct(or (f control Inputs, ai 's, and thle cxui
input vector, v( s). The vector III, MInclde disturbances, anid fictitious deCSign in puLt"
for representing model uncertainty. Outputs Of the synthesis model are separaed Into
vector of measured feedback signals, i ., and the regulated output vector,
vector z ( s) contains the performianct, cr'Itein' outputs an11d 0U!putIS which deflI1 neconlSinn1
on the closed-loop system.

4.1 Performance Objectives and Constraints

TVhe primary performnance requirement for thle DIA Is ito mlfiinize thle LOS error resU!1tin.:
from thle external disturbances. This ca~n be exprsed as mlinlimizing

where:
If~s is the closed-loop transfer matrix of the plant and controller,

is an output vector contining A and V~ LOS errors,

d is a vector of disturbance inputs.

T[ signifies the m axinm SIngul1ar vaIlue.

The performance criteria may be represunted as a WCIghtin1 , funIcth0I I I i onl[I
design output I (,. e I K*)beainon.'ns rtution mnatr\x

U t -l.; he 1 ig i ' ~isrf i

where:
in s IS a tran',fcr funCtin 01) in~ for N axis LOS error,

n~} is a tiransfer fii; iriefor V' axis LOS error.

The 'H design criteria for performance is1:' d: a. itroller such that:

which implieS:



10'

1001

10-21

10-2 10-, 100 10' 102

Fmq-uwy Uh)

Figure 3: Magnitude plot of zr, weighting functions.

where:
CLOSX is the X axis LOS error,
C L 0S., is the Y axis LOS error.

By reducing I iv'(s) I and iv-'(s) I one can find the controller which minimizes the LOS
error.

A constraint on actuator control activity is included in the synthesis model by limiting
the closed-loop response from disturbances d(s) to the controller output u(s). The proof-
mass actuators are only capable of providing force over a limited bandwidth. To account
for this physical constraint, the closed-loop response is restricted to be 'band-pass' over
the effective frequency range of the actuators. This is accomplished through the weighting
function WaR(s,) on the closed-loop control vector u(s).[ tC, (s) 0 1

- (6)

0 Wii'1 (s)

where:
irJ)is a transfer function weighting on th~e ith controller output.

in theory each of the controller outputs could be individually weighted. As a simpli-
fication an identical weighting is used on each of the outputs. Figure 3 is a plot of the
magnitude of the it,-' transfer functions.

The HL design constraint is to find -,controller such that:

<(7)



where:
HId(S) is the closed loop transfer matrix from the disturbance input vector

d, to the controller output vector u.

The disturbances d(s) form the design criteria input vector w,(s) which is included
in the exogenous input vector w(s). The outputs of IV,(s) and lVn(s) form the design
criteria output vector z(,) which is included in the design output vector z(s) of the
synthesis model.

4.2 Representation of Model Uncertainty

The block diagram in Figure 4 shows the DTA model separated into a ladder structure.
Model uncertainties are represented by A blocks at several locations in the nominal model.
The block Aadd represents unmodeled high frequency (>10 Hz) structural dynamics in
the form of an additive uncertainty across the plant. The legend of Figure 4 indicates the
types of uncertanties represented by each of the A blocks.

DTA model uncertainties shown in Figure 4 must be represented in the synthesis
model. Model uncertainties may be represented as Ho, -norm criteria based on the small
gain theorem. Uncertainties shown in Figure 4 may be grouped into a single block
diagonal structure represented by A(s). The uncertainty block A(s) is normalized by
.,aling gains at the plant inputs and outputs such that

II(~l< (8

Figure 5 is a block diagram showing the relationship between the synthesis model
P(s), the block-diagonal uncertainty matrix, A(s) and the controller F(s). The input
vector zA to A is included in the z vector of regulated outputs of the synthesis model.
The output vector w, to A is part of the exogenous input vector, w, of the synthesis
model. From the 'small gain theorem' if a controller is found such that

where:
H,,., is the closed-loop transfer matrix from w, to z,

then the closed loop system will be stable for all possible plant variations represented by
A. Maciejowski [31 and Doyle 121 provide more detail in modeling of uncertainty and
representation by the small gain theorem.

The synthesis model for the DTA contains a simpler set of plant uncertainties than
shown in Figure 4. This simplification is motivated by the overconstrained nature of the
complete R, design problem. The 7, problem results in a closed-loop system with

<. 1. (1 )

By using the 7,, norm from w to -- as the design criteria, the diagonal structure of A
is ignored. The uncertainty A, is taken to be a fully coupled matrix. As the size of

CAB-8



Legend: Plant Model Legend: Uncertainties
{Ai, , Ci }: state-space mrcpnscntarioi -Iadd& unmodeled structural modes

of ith structural mode AA.: actuator modal displacement
CLOS: X and Y' LOS errors for ith mode

y: sensor output vector As,: sensor modal displacement
U: controller output vector for ith mode
d: disturbance input vector A1F.: pole locations for ith modc

Aid

U IIY

fAA As1 I

Figure 4: Block Diagram of the DTA Plant Model Showing Representation of Uncer-
tai nty.

Figure 5: Closed-loop system of synthesis mnodel and controller.



WFi lant Model

Figure 6: Complete Synthesis Model for Final lo Design

the matrix sincreases, the potential for introducing conservativeness into the design
increases.

An initial control design for the DTA used a synthesis model which did not include

the plant model pole uncertainties represented by As This initial design was found to be
sensitive to variations in the plant dynamics. The initial control design was particularly
sensitive to the 18 tIh and 191h design model structural mode pole locations. Addition of a
feedback uncertainty representation AF. from the LOS error outputs to the control inputs
reduced the sensitivity of the closed-loop design to the plant dynamics.

Additional insensitivity to the 18 tIh and 19 h design model modes at 3.47 ltz and

3.51 Hz was obtained by including uncertainty representations for these modes as shown

in Figure 4. The final uncertainty representation resulted in a controller with sufficient

insensitivity to plant variations.

4.3 Final Design Synthesis Model

Figure 6 is a block diagram of the final synthesis model containing the design model,
performance objectives, design constraints and uncertainty representations. Weighting

functions w0.(s) and w,,(s) are constant gains. The weighting functions tr,() are 3rd

order transfer functions with magnitude gain shown in Figure 3.
The gain block Kad is a diagonal scaling block on the input associated with the

additive uncertainty. Kp is a diagonal scaling matrix associated with the uncertainties

AF,. and A,, on the 18th and 19 h mode pole locations. KI. is a diagonal scaling block

CAB- 10
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Figure 7: Singular Values of the Closed-Loop Responses to Disturbances.

associated with the feedback uncertainty block A,..
The design process involves iterating on the selection of the design weightings and

scaling gains to obtain a satisfactory trade-off between performance requirements, design
constraints and sensitivity to model uncertainties.

The final synthesis model was 8 6 "h order, with a w input vector of dimension of
39 and z output vector dimension of 12. The resulting controller was also 8 6t1h order.
The size of the controller was reduced to the maximum allowable of 58 th order using
balanced-truncation model reduction.

5 Analysis and Experimental Implementation

Figure 7 shows the closed-loop LOS errors for the X and Y axes and the control responses
to disLrbances. Vibration suppression is improved over the open-loop system by a factor
of 8 in the X axis LOS error and a factor of 5 in Y axis LOS error. The original goal was
to achieve a factor of 10 improvement over the open-loop structure. However the initial
controller designs were sensitive to the 18 th and 1 9 th design model mode locations. The
design objective was relaxed to obtain a factor of 5 improvement in LOS error, and to
reduce the sensitivity of the closed-loop system to variations in the 1 8th and 19 "h modes.
Table I is a table showing the sensitivity of the closed-loop system to variations in the
18 ' and 19"' mode frequencies for the final design.

The -, designed controller was discretized using a zero-order-hold approximation,
and implemented on a real-time controller running at 280 hz. The closed loop system
was excited through the disturbance inputs and the sensor output data recorded. This
data was used to reconstruct, off-line, an estimate of the magnitude response from a

:AB-I I



Table 1: Allowable Range in Frequency of 18th and 19 th Mode For Closed-Loop Stability.

Allowable Variation 18 'h Mode 19 th Mode
% increase 69.5 % 00
% decrease 78.4 % 90.4 %

Y Axis Analytic Y" Axis Experimental

10*~ .10-(.

3 6 7; 5 9 10o 3 4 5 6 7 8

Pw~y (Ha) q.Wy (Ha)

Figure 8: Comparison of Analytic Prediction of Y Axis LOS Error to Experimental
Reconstruction.

single disturbance inpu, to the X and Y LOS outputs. Figure 8 compares the analytic
prediction and the experimentally reconstructed Y axis LOS error response to a single
disturbance. At low frequencies the experimental reconstruction is corrupted by noise
due to low amplitude signals with large relative contributions to the LOS error. However
from about 3-10 Hz the analytic and experimental results show good agreement. A factor
of 5 improvement in LOS error attenuation is seen for the dominant open-loop peak at
6 Hz.

Figure 9 compares the open and closed loop time response of an accelerometer on the
structure to a disturbance input. Here the effectiveness of the controller in attenuating
disturbances is clearly evident. A low frequency suspension mode (not controlled) is
visible in the time response of Figure 9.

cAt3-12
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Figure 9: Open and Closed-Loop Time Response of an Accelerometer Output on the

DTA Structure to an Impulse Disturbance Input.

6 Contribution of Passive Damping to Control

The DTA structure was designed and constructed with passive damping elements for vi-

bration suppression. Typical LSS designed without passive damping have modal damping
ratios significantly less than for the DTA. An analytic study on the contribution of passive

damping to the per-)rmance of the active control is described in this section.
A representative 'undamped' model of the DTA structure without passive damping

was developed based on typical modal damping present in LSS. The active controller was
redesigned for the undamped structure using the same design criteria as for the passively

damped structure. Comparisons of the passively damped and undamped designs provide
a basi for evaluating the importance of passive damping.

6.1 Representative Undamped Structural Model

Modal damping ratios for the DTA structure with passive damping range from 0.023 to
0.121. An analtic model of a DTA structure withou:. 7assive damping was obtained
by rLdUIcing the structural mode damping ratios to 0.002, a value determined from mnea-
SUILments of the undamped ring truss component. Medal displacements and frequencies
%,verc not changcd for thc un&mped mnodcl. Fi_,ure 10 is a plot of the maxim urn singul-,
V'1IuCs Of tIe frcquency respmse from th - diturhance inputs to each of the X and Y
LOS error otputs.

The trcq unCcv rCspone,,C for the und ai njpcd :m,.,cl is >ignificantly different from the
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Figure 10: Maximum Singular Values of the Response from Disturbance Inputs to X and
Y LOS Error Outputs for the Undamped DTA Model.

DTA model with passive daymping (Fig. 2). The undamped model frequency response has
many sharp resonance and anti-resonance peaks resulting from the decreased structural
damping. In addition, the undamped model shows significant structural response up to
10 Hz whereas the passively damped DTA shows less response at these higher structural
frequencies.

6.2 Control Redesign for Undamped Structure

The analytic DTA model without passive damping was used to redesign the H,, controller.
With the exception of the DTA plant model, the synthesis model was unchanged from
the final ,-, co-iii-o design. Syntiesis model weighting functions were the same as in
the final design for the passively damped structure.

A sensitivity analysis of the redesigned compensator revealed significantly greater
sensitivity to the 18th and 19 th design model mode pole locations than for the passively
damped system. Table 2 gives a comparison of the allowable independent variations in
frequencies for the passively damped system versus the system without passive damping.
The passively damped system can tolerate a large increase in the frequency of the 19"'

mode, while a variation of less than + 1.0% in frequency of the same mode will result in
an unstable design for the undamped system.

The 7,,, compensator resulting from the undamped model had two unstable modes
which could not be reduced. Unstable compensators are generally undesireable due to
the difficulties in implementation.

CAB-14



Table 2: Mode Frequency Tolerances for Control Designs

Allowable Frequency Variation 18 "h mode 19 th mode
Passively Damped System +69.5%, -78.4% +oo, -90.4%
Undamped System +48.8% - 77.6% +0.5%, -42.0%

Controller order reduction for the 7- active controller was affected by the absensce
of passive damping in the analytic plant model. Balanced model truncation of the 7-K
control designs to 58 states resulted in a total magnitude error bound of 0.1628 for the
compensator with passive dampiag compared to 0.2968 /or the compensator without
passive damping. Reduction of the undamped system compensator to approximately the
same total error resulted in a controller with 61 states.

To evaluate the influence of passive damping on controller performance, the 7-K
controller for the undamped model was redesigned to recover, in part, the sensitivity
margins of the 'H,, controller for the passively damped system. The LOS error perfor-
mance bound (i.e. - (s.)) was relaxed by a factor of two for the undamped DTA model.
The uncertainty input gains were increased uniformily to minimize the sensitivity of the
undamped closed-loop system to the mode pole locations of the model.

The full-order 'H compensator was 86 states for both the passively damped and
undamped DTA models. Figure 11 shows frequency responses to the LOS errors and
control feedback from the disturbance inputs for the closed loop full-order design without
passive d'mping. Both the LOS performance and control activities are similar to those
of the passively damped system.

The structural mode frequencies of the passively damped and undamped models were
perturbed by equal amounts of less than 10% of their nominal values. Figures 12 and
13 show a comparison of the LOS error response to disturbances for both the passively
damped and undamped closed-loop systems. Clearly, from Figure 12, the sensitivity
of the undamped system is still greater than for the passively damped system. For the
same 7,equency perturbations the passively damped design meets the original performance
bound while the undamped design violates even the relaxed performance requirement.
The peak response of the LOS error is roughly two orders of magnitude greater tor the
undampevd system as for the passively damped system.

7 Conclusions

An 7-, design approach was applied to the active control of a passively damped large
space structure test article. Performance objectives, design constraints, and model uncer-
tainties are directly included in the design process. Representation of model uncertainties
Vwa,, used to achieve designs wkhich were insensitivc to plant mnodel variations.
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Figure 11: Singular Values of the Closed-Loop Responses to Disturbances for the Un-
damped W, Design.
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Figure 12: Singular Values of the Closed-Loop Responses to Disturbances for the Pas-
sively Damped and Undamnped H-t, Designs with Perturbed Models.
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Figure 13: Closed-Loop Time Responses to Disturbances for the Passively Damped and
Undamped 'H,, Designs with Perturbed Model.

Analytical studies into the effects of the passive damping on the active control de-
sign reveal that the presense of passive damping decreases the sensitivity of the active
controller to model errors and allows for improved performance. Furthermore, active
control designs for the passively damped structure were found to be easier to reduce as
compared to designs for the model without passive damping.

Hardware implementation of the active control design provided experimental verifi-
cation of the design results. Analytical prediction showed good agreement to results from
the test data.
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Abstract

The control-structure interaction of a flexible structure, namely a cantilever beam, and a reaction
mass actuator (RMA) is investigated. Mathematical model, in the form of differential equations
and transfer functions, is obtained. The study is broken into two steps: (1) open loop and (2)
closed loop. Within the open loop part, the RM.A is broken into two sub-steps: (a) dead RMA and
(b) passive RMA. In the closed loop part, negative feedback of the beam tip velocity is used for
active RMA. Transient responses and root loci are given.
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Introduction

The system under consideration is a cantilever beam with a RMA (reaction mass actuator), also
called PMA (proof mass actuator) attached to the tip of the beam (Figure 1). The RMA consists of
two mechanical components: the magnet-shaft assembly of mass m and the housing of mass mh.
When the magnet-shaft assembly is fixed to the housing, the RMA is called "dead RMA," and
when the assembly is free, is is called "passive RMA." When the control loop is closed, the RPMA
is called "active RMA." The control-structure interaction (CSI) of this electromechanical system
will be analyzed in the following steps:

1) Q.pn loop
a) Dead RMA. The simplest model is a single-degree-of-freedom (SDOF) system. The

undamped natural frequency is determined, and the beam tip response, which is obtained
experimentally, is presented-

b) Passive RMA. The simplest model is a two-degree-of-freedom (TDOF) system. The
undamped natural frequencies are determined, and the beam tip response which is obtained
experimentally, is presented.

2) Closed loop
Active RMA. The velocity of the beam tip is used for negative feedback. The control-
structure interaction is investigated. The transient responses and root loci are shown.

System Dynamics

1) 012enLQQ

The governing differential equation of the beam, using Euler-Bernoulli model, can be shown as

EIY + pA a2 f(x,) 0<x</ (1)
dX 4  dt2

where E, I, p, A, I are the Young's modulus, area-moment of inertia, density, cross-sectional
area, and length, respectively.

V 

RMA

Figure 1 Cantilever beam system with RMA (Reaction Mass Actuator)

a) Dead RMA

The system consists of a cantilever beam with a concentrated mass at the beam tip. The frequency
equation of the system can be shown, see [1] for example, as

CAC-2



--±- - M-XL(tan ),L - tanh U)L=O (2)cosX~cosh 2. 1 pAL1,

The transcendenital equation (2) muIst be solved numerically to yield the eige nvaiue, 2,I, then the
natural! frequencies are given as

NpAL1,2

Since the be.'iri model given by Eq. (1) yields infinite degrees of freedom, the controi-structure
interaction of the beam and the RMIA is difficult to analyze. The problem is more tractable if the
systemi with dead RMIA is modceled as SDOF for the fundamental miode. Figure 2 shows this
model wvith K, NI, anud b are the equivalent stiffness, equivalent mass, and equivalent damper,
respectively. '[he mass and stiffness cart be calculated from physical properties, but the damping2
mu-Lst be determ-ined experimenta~lv.

x

b

M+m

AK

F tttjru 2 :\sunple- iodel of the system with dead RIA

:,' can 11t 1ud Vi vibrti'On tx e [2]1 for example, that

3E1
K ~ ~ +- 0.-~ ! -+236pA L (4)

1".1l in .c the ise Of the RNIA mantsatassembly and housing, respectively.'

VI1 rexp'rimenrt xwis performed, where ihe physical para-meters of the tested beam (Aluminum 60()l -

I - I317A ia. A 3 in.,-5 0,i. E l 10x 10 6 psi p =0.-)588 l*

cc ui ale titi ne ss anrd cw~i\ale: ni uA .s are cailculated to be I

11) lb. 2 lb, s2
k n. -. 0! 3(' >IY -- 6.47 x 10-/

'-.'rn ural reunyis cii-jidan ohscr-ved to be 3.8 Hz, and 3.5 lIZ. respectively.. The
cc cjinti t th >v~e . i dad INMA is hoxn in Ficre3
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Figure 3 Response at the beam tip with dead RMA

b) Passive RMA

When the moving part of the RMA is released, the RMA acts as a passive vibration absorber
(Figure 4). When b = 0, the system becomes the classical Den Hartog's vibration absorber
problem [3].

x y

-- -- -- ----------------- 1I

b

M M

"absorber

Figure 4 System with vibration absorber (passive RMA)

The differential equations are

[ 0]{;} +[b+c -c]{;[k+[Kkkk xk]{x}= {}
0 j -C c -k k iy:o 05

where the undamped natural frequencies can be obtained as
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2 (M+m)k+mK ((M+m)k+mK) 2  Kk
2MM 2Mm )MM

(6)
2 _ (M+m)k+nzK J(M+m)k+mk 2 Kk

02 2Mm + 2Mm ) -MM

The response at the beam tip with passive RMA is shown in Figure 5.
2/8/91 11:54PM

Start0.00OSec T=-3.996Sec Lines-1024 No OvIp Banning
Inst Time Chan 1

600m I I i I II I I I I I I I I
150Om

/div --- ---I I I I / I I I _

Real _ _

I 

-

-Io , . I I I I
-600h

0 Lin Sec RCLD 4

Figure 5 Response at the beam tip with passive RMA

2) Closed Loop - Active RMA

The closed ioop control utilizes the beam tip velocity X for negative feedback and the system can be
conceptualized as shown in Figure 6.

fdt

x
• kx

c integrator -

Figure 6 Conceptualized control scheme
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For physical implementation, an actual system can be shown as in Figure 7.

Whe clsedloo cotro isappid h tutr-M systremUO shwPFTiguTre7cnbmold

k Iy

Ki - .
[.]_-Qcj, 5A.: QR I', K

SUMM ING

Figure 7 Implementation of the control system

When closed loop control is applied, the structure-RIMA system shown in Figure 7 can be modeled
as an electromechanical system (Figure 8).

bC

f d-- f c--
C

HK
(a)

CC

M mn

x Y
(b)

Figure 8 Electromechanical system: (a) mechanical and (b) electrical
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The governing differential equations for the mechanical part can be obtained as

A1 01]{ .}+[ c -c]{i} + [K± Ic 1]{x} ={fd-f }7a
0 mjl) L-C C ' -k k ly f, (a

where ftj and f, are the disturbance force and control force, respectively. The differential equation
for the electrical part is dai

e = Ri + L d + eb (7b)dt

The electromechanical coupling is given by

f, =kj eb = km(Y-.i) (8)

If the beam tip velocity is used as negative feedback for the active RMA,

e = k t (9)

where kg is the gain. Then, combining Eqs. (7-9) yields the closed-loop system equations as

M 0 }* + - C 0 ]{ + -k k -k,}=y{: (10)
o0 0 0 " 1 -(.+ k) k, L_ 0 0 R ]i 0

Taking the Laplace transform,

[Ws +(b b+c)s±+K +k -(cs +k) k, 1 X(s)[ Fd(S)1

-(csk) ms 2 +cs+k -k. X(s) 0 (11)

-(kg + k )s kms Ls+R [I(s) J 0

The transfer functions relating x, v, i, and fd are given by

y(s) = JH()F~ ) (12)
X(s)' 'H,(s)

where the followin- are obtained with the aid of Mathematica [4]

X(s) _ Ls 3 +(rnR + cL)s 2 +(cR + kL + k 2)s + kR
H,(A)s)

'F.(s) A(s)

y() (s) CLs +(UR+kL+kk +k. 2 )s+kR
(S F(s) A(s) (13)

4,,(k . kz I,,,,: -(S .+ Ik,]

F,,(s) /A(s)
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A(s) = {MmLs'

+{(MR + Lb)m + (M + m)cL}s 4

+{(M + m)cR + (Mk + rnK + mk + bc)L + (M + r)k. 2 + (Rb + kk.)m}s'

+{(Mk + mK + mk + bc)R + (Kc + bk)L + bkm2}s 2

I(R+ Lk + k. 2 )K + Rbkjs

+{KkR} (14)

The response at the beam tip, with active RMA, for different values of gain is shown in Figure 9.

2/9/91 0:01AM

Start-0.00OSec T-3.996Sec Lines-1024 No Ovip Hanning

Inst Time Chan 1
500m I I I I II I I I I1 I I I I

/div - --

_ - _ ,

,oo 7 i i I'  I'  I i
-70 I I I I I I I

0 Lin Sec RCLD 4

(a)
2/9/91 0:29AM

Start;0.ooSec T=3.996Sec Lines-1024 No Ovlp Hanning

Ins1 Time Chan 1

loom- T -1 -1 - - - -

-7 0 l I I I I "

0Lin Sec 4

(b)

Figure 9 System response with the active RMvA: (a) moderate gain and (b) high gain
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It is interesting to note that, for an otherwise stable control system, by simply switching the
electrical leads of the RMA, the system becomes unstable or self-excited vibration is induced

Start 0.00O Sec -=3.996Sec Lines=1024 
No CvIp anning

Inst Time Chan 1
300m I I I - -

- I I I I I - -,-- I
- l -- - - - - -- -- - -- -T - -- - - - - - - - - - - --/

i I I I 1 I

Real - f I ! I I I I I

I II
7 7 I eesn

-300r I
0 Lin Sec 4

Figure 10 System response to positive feedback

The stability behavior of the controlled system, as k and c of the RMA are varied, can be seen in

C C*Q**-

/\ " / L.,

4,\ ,1.

I L

(a) (b)

Figure 11 Root loci: (a) decreasing k and (b) decreasing c
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Dic~sin
From the experimental results it can be seen that for the uncontrolled system (with dead RMA), the
beam tip vibrates in excess of 45 seconds (Figure 3). The system's ability to dampen out vibration
is improved by the use of passive RMA. It is about 4 seconds or 10 times faster (Figure 5). The
system is further improved by the use of active RMA where the settling time is anywhere from 2
S.olds to .;sz thLa. I sccond g por :h -alv' of control gain used (Figure 9).

Concluding Remarks

Active control applied to structures provides a powerful means of suppressing vibrations, but it
also incurs some "costs." These costs are mainly: more expense; more complexity in electronics,
hardware and software; and less reliability. With negative velocity feedback for the configuration
under consideration, the control system is less reliable because it may become unstable, for certain
values of physical parameters and control gain. This fact is also discussed by Inman [5].
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ABSTRACT

The focus of this study was on computationally verifying that passive electrodynamic
damping was competitive or superior to current damping technologies recommended
for Large Space Structures (LSS). Electrodynamic damping is linear and is
characterized by a dash pot dissipative force which is proportional the relative velocity
of the damper components. The constant of proportionality is c. The study investigated
the maximum ratio of c to the mass of the damping system as well as the frequency
dependence of c. Both analytic and ADINA models of an LSS-like structure, the Air
Force Wright Aeronautical Laboratory 12 Meter Truss (TMT) were used, together with
TMT data, to understand and verify Passive Electrodynamic Damper (PED)
performance.

The study results indicate that the Auxiliary Mass PED (AM-PED) is competitive
or superior to active dampers, in damping TMT bending modes, when the AM-PED
weight is comparable to that of active damping actuators. This is important because of
the enhanu,.d reliability and cost savings of a passive damping system. An AM-PED
does not require sensors, a power source or a computer control system. Although a
detailed comparison was not made, it appears that equivalent weight strut PED
systems may also be superior to viscoelastic-material strut dampers. This is important
because PED systems do not outgas and are stable with respect to environmental
temperature variations. In addition PED system performc'nce is easily calculable, c is
independent of frequency and of amplitude for the low modal frequencies
characteristic of LSS.

2241 Foothill Lane. Santa Barbara, CA 93105, (805) 966-3331
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1.0 INTRODUCTION

This paper describes research that was supported by the Defense
Initiative Organization (SDIO). The object of the study was to investigate the fea !bility
of specially-designed, spacecraft vibration-damping-devices, known as a Passive
Electrodynamic Dampers (PEDs). PEDs absorb mechanical energy, by means ohmic
heating, when there is motion relative to the fieid of a permanent-magnet. Future
military and non-military spacecraft are expected to be large and flexible, with many
low frequency modes. Damping these modes is critical to the operation of some on-
board sensors and equipment. A successful PED would therefore be applicable to
military non-military space programs.

The goal of the study was to verify PED damping effectiveness by
mathematically modeling and evaluating PED electrodynamic charateristics, as they
relate to Large Space Structures (LSS), and computationally simulating the
mechanical effect of PED configurations on LSS. The approach taken was to focus on
one LSS test bed, called a model LSS (MLSS), since there was time to consider only
one LSS simulation in the project. The electrodynamic modeling was more get,ar31,
shcwing how the key PED design parameters - weight for example - varied as a
function of LSS and space environmc-7t characteristics - frequency and temperature
for example. The idea was to design a PED for the MLSS using the general PED
design equations that evolved from the research. The MLSS modal damping was first
approximated analytically so that the key parameters and their relationship to the
damping could be identified. PED caused, LSS modal-damping was then compared to
MLSS data obtained using other damping systems. Because the analytically
calculated damping was satisfactory the PED was incorporated into an ADINA
(Reference 1) code model of the MLSS. The ADINA model gave the most accurate
PED modal damping effectiveness calculation and allowed the most accurate
comparison with other damping methods.

After much consideration and discussion with the appropriate government
agencies the MLSS chosen for the study was the AFWAL twelve meter truss (TMT,
References 2 and 3). The reason for this choice was that the TMT was the simplest,
technically acceptable structure for which adequate data was available.

Much of the research presented in this paper is an evaluation of the damping
characteristics of a particular PED configuration called the Auxiliary Mass Passive
Electrodynamic Damper (AM-PED). Both anaiytic and computer simulation results
show the AM-PED is competitive with active damping systems anticipated for
spacecraft use. Substitution of the AM-PED for active damping could mean large
increases in space platform damper reliability, weight reduction and a lower cost
damping system. The AM-PED is expected to be a very important addition to the
technologies used for LSS damping. Other PED configurations are expected to also
be important but they have not been studied in as much detail. The Strut Passive
Electrodynamic Damper (S-PED) appears to be a particularly promising substitute for
viscoelastic materials (VEM) in damping structural truss modes. PED damping
concepts, electrodynamics and space environment characteristics are discussed in
Section 2. Sections 2 - 4 discuss the results and analysis of this study. Section 5
presents the conclusions and recommendations. In the next subsection the rationale
for studying low frequency dampers, in parlcular PEDs, is discussed



1.1 LARGE SPACE STRUCTURES (LSS) AND DAMPING

Increasingly greater roles are anticipated 'or satellites in the civilian economy,
in government research and in military planning. Planned space structures are
therefore becoming larger with more complex missions and increasing power
requirements (References 4 and 5). The fiscal and complex-mission, space-structure
requirements, for these planned systems, result in lightweight, flexible, loaded, LSS
design concepts with very low modal frequencies. In combination with the lack of
gravity these requirements also mean that there will be small frictional energy
dissipation and modes will be poorly damped.

One proposeu, solution to the LSS structural requirements has been the use of
trusses as the basic support structure. Trusses are both lightweight and rigid and have
been designed in beam configurations. The plan is to mount sensors, equipment and
C',lar panels on these lightweight frames. The reliting I S; _:re truss-type structures
connecting a variety of flexible components. Predictions indicate that these flexible
components will likely have natural frequt-ncies in the same rdIge rs the dominant
truss modes (Reference 5).

A number of groups have developed experimental LSS structural models to
verify their structural dynamic computational tool predictions, as well as verify
proposed damping cofupt- Thn PACOSS (Passive and Active Control of Space
Structures, Reference 6) dynamic test objet and Twe!ve Meter Truss (TMT,
References 2 and 3) supported by the Air Force and the Dynamic Scale Model
Technology (DSMT, Reference 5) program supported by NASA are examples. The
PACOSS program is particularly advanced and experimental results appear to
support the current LSS damper design philosophy (Reference 7):
(1) Damp as many modes as possible passively, using VEM.
(2) Damp all remaining modes (assumed to be only a few) by means of active
damping.

The TMT approximates a twelve meter beam and experiments have been
performed in both a cantilevered and a free-free configuration. The cantilevered
configuration is not "realistic" for a complete LSS1 and is a compromise so that
experiments can be performed with low-frequency structural modes 12.25 Hz). TMT
cantilever experiments have been performed and analyzed with anc without VEM
struts. Free-free TMT experiments have been performed with and withoui VEM struts
but the results have not been analyzed in detail. Active-damper, cantilevered-TMT
NASTRAI t experimental pretest predictions are also available.

Not only damper development but LSS designs and structural dynamic testing
are still in the research and development stage. At the present time VEM is the passive
damper of choice and for the most part, in practice, it has been used in strut
configurations (References 3 and 6). However, there are some shortcomings to the
use of th.s material. The full temperature variation for an rxterior spacecraft component
could bp '50oC, from about -500C to about 1000C. Some VEM materials have a
useful range of only 20 - 30 oC. It is recognized that one material will not suffice for
every application and that active heating elements will have to be used in conjunction
with VEM to maintain constant damping (Reference 8), for some applications. !n
addition VEM is nonlinear and its damp .;g characteristics are not easily predicted.

1 There are structures that are expected to be cantilevered .,jn the tr;J3s. The solar paddles in Reference 5
are an example



These shortcomings imply uncertainties and expense in damper design as well as
possible reliability problems in actual practice. In addition there is the question of the
VEM damper effectiveness with respect to its weight. In the TMT experiments the final
VEM passive damper configuration weighed about 50% more than the undamped
truss. Not all of this damping material was effective in damping the modes, however,
and future TMT studies may investigate the elimination of the least effective struts.

At the present time a common active damping system uses a coil and
permanent-magnet actuator system. A current is generated in the coil and exerts a
force on a moving magnet corresponding to a predetermined algorithm. One such
algorithm is to make the force proportional to the velocity of the attachment point for
example. The system is very convenient in its application: the actuator is attached at a
position of maximum modal amplitude, consistent with dynamic stability requirements.
In addition, because it is made of metals, its performance is very stable with respect to
expected environmental temperature variations. There are some shortcomings,
however. One of these appears to be that the force exerted is limited by the maximum
current that can flow through the coil. Too high a current will melt the coil. Most of the
power dissipated in the coil appears to result in a restoring force which changes
direction as a function of time. Only a small portion of the force actually damps the
motion of the LSS modes. Additionally the actuator system requires motion sensors, a
computer control system and a power supply. All these -'ystem components add
weight and contribute to system reliability issues.

If the objective of the active damping system is to damp only a few modes,
replacing the o!ectrical-power qenerated restoring force with a spring and a
permanent-magnet system may be the most efficient and cost effective design. The
AM-PED herein is a p damping device which does just that. It has all the
advantages of this active damping system but apparentiy none of its disadvantges. In
addition it may be more effective in damping LSS modes than an active damp;,g
system.

2.0 THE PED

In this section the PED concept is first discussed from a general point of view. In
Section 2.1 the AM-PED is discussed and then in Section 2.2 the design constraints
imposed by the electromagnetics is examined. Finally in Section 2.3 the effect of the
space environment on the PED is discussed.

The basic PED concept is to mechanically couple LSS vibrations to relative
motion between an armature and a magnet. The relative motion gives rise to a
dissipative force F which is proportional to the relative velocity of the two PED
components. That is

F = cv, (1)

where v is the armature/magnet relative velocity and c is the constant of
proportionality. Figure 1 illustrates the principle. The relative motion generates a
current in the armature and vibrational energy is absorbed via ohmic heating. This
kind of damping - electromagnetic damping - has been considered in the past for other
kinds of systems (Reference 9) and so the concept is not new. What is new is the
application of the concept to LSS and the particular LSS PED structural and magnetic
configurations. Because of the low LSS frequencies elcctromagnetic damping, as
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manifested in the PED design, is a very weight efficient LSS vibration damper. This
will be demonstrated in Sections 3 and 4. Because of superior PED, spacecraft-
environment, material-properties and its simplicity it is a very desirable damper
system.

Armature

2s

=B--r B-Motion

(area nr2

Magnet

Figure i. Generic PED Components

The PED is essentially a dash pot, for all LSS vibrational amplitudes of concern,
and the mechanical analysis is relatively straight forward. Difficulties lie in efficiently
designing the magnetic circuit and in coupling the dissipative force to the complex
multi-modal mechanical motion. Two coupling configurations were studied: (1) the
AuxiI~ary Mass Passive Electromagnetic Damper (AM-PED), and the (2) Strut PED (S-
PED). The idea behind the AM-PED is to transfer the LSS vibrational ener to a proof
mass ant-' ,hen dissipate the the proof mass energy via ohmic heating. The AM-PED
can theoretically be attached anywhere on the LSS the vibration amplitude is large.
The S-PED is used mainly as a component of the LSS truss support structure to
dissipate truss vibrations.

For most coupling the PED is designed to have is own restoring force
proporticnal to displacement and consequently its own resonant frequency cto. The
PED has, of course, its own mass, m, as well. One design problem is choosing the
PED parameters, c, oo, and m to optimize the damping over the LSS frequency range
of interest. For a given m, we are actually optimizing the damping by appropriateiy
choosing the parameters c/m and wo.

One of the advantages of the PED is that it is a simple, linear, mechanical
system 9nd its effect can be calculated. However, coupling to a complex LSS means
the analysis is more complex than for a one dimensional system. In general the PED
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damping of a given LSS of mass M and frequency Qon (n = 0, 1,2, 3 ......... ) will not be
the same as for a one dimensional system of mass M with a damping force
proportional to velocity. That is the percent oi critical damping, Yn, of the particular LSS

mode will not be simply c/(2MQk.n). We can expect that yn will be related to the effective
mass of the LSS, for the particular modal vibration of concern (the total LSS mass is
not necessarily effective in the vibrations of a particular mode), and to the PED
parameters. These latter comments are particularly relevant to the AM-PED
configuration.

We now consider how the PED parameter c (equation 1) is related to the PED
design parameters. As expressed in equation 1, the force is cv, v is the relative velocity
(m/sec), and

c = cyr 2(2s)B 2  (kg/sec), (3)

where B is the flux density field (Weber/m2), C is the conductivity (mhos/m) r is the
magnet radius -(m) and 2s the thickness (m) of the armature. Reference should be
made to Figure 1. Equation 3 assumes that none of the magnetic leakage flux is
effective in damping the system and is thus a lower bound on c: the armature will be
wide enough to cut most of the leakage flux lines.

Equation 3 is not valid for all frequencies and although an arbitrarily large c can
be developed simply by making the magnet large enough the important ratio c/m
cannot be made arbitrarily large. Equation 3 is valid so long as current can be
generated throughout the thickness, 2s, of the armature. If the frequency of oscillation
is very large the current will only exist on ihe surface of the armature and 2s in
equation 3 will be replaced by a smaller number. Therefore at high frequency c is
smaller than expressed by equation 3. The depth of penetration of the current into the
armature is controlled by a parameter called the "skin depth", 8, which has the

dimensions of length. Roughly speaking when 8 >2s equation 3 is valid. As we will see
in Section 2.2 we can expect equation 3 to be valid below about 50 Hz. This frequency
is far above expected LSS frequencies.

Equation 3 shows that the dimensions of the magnetic system (Figure 1) enter
the calculation of c (the area, nr2 , of the permanent-magnet for example). What is not
obvious from equation 3 is that the magnetic field B is also dependent upon the
dimensions of the magnetic system as well as the type of magnetic material used.
Optimized designs have a maximum c/m value which is dependent upon the magnetic
system design. The maximum practical LSS c/m ratio, for an aluminium armature, is
about 500 sec-1. We will see in the next section that the c/m ratio is relevant when
designing a AM-PED to damp more than one LSS mode. It is also important when
comparing the equivalent weight of alternative passive damping concepts. In Section
3.2 we roughly compare the S-PED to VEM struts.

2.1 THE AUXILIARY MASS PASSIVE ELECTROMAGNETIC DAMPER (AM-
PED)

The AM-PED concept is straight forward and very simply applied to a LSS. The
idea is to continuously transfer LSS vibrational energy to a proof mass and dissipate
the proof mass kinetic energy. In the case of the AM-PED the proof mass is essentially



the magnetic systerm and the dissipative force is described by equations I ar- '
AM 0 ED made lightweight and springs act as a linear restoring force P',-

§rct t a -ec co-cnts to flow in the armature resulting in energy dissipatin-
>n! J: u-or' i' is only necessary to know that the dominant weight o

ar;,zen; from tne mag netic system taken to b '.i niass m. For reference trie am c c
of marq'>z~ motion w!1; be about an inch (maximum ILSS vibration ampliw'e' i '

c!:,-. ii nc',,) the overall dimensions of the AM-PED designed for the i 4

c a,.b c 10 cm x 10 cm with a mass roughly equa; to 4 lbs. Tnis a
cvice whict, is attached externally to the ILSS (in this case the TM

rriimum vibration amolitude. (Note that many AM-PED riesig,-
-C1 'Iffrerent dimensions and magnetic materiaqls.) As we will seeA AM

e k''' ,.ed to excee d 5%/ for very reasonable AM-PED masses and rf-r

vv~ri act ye d>-. mciflg systems. 5%', damping is approximately the requirement for -'r
7 t . fr- en ce 7

22 P7; EC T RODYNAMIC PED CONSIDERATIONS

A,, discu-sc~ -e'n Section 2.0, the damping constant, c, depends upon tVie vae
~ ~r~' -ine AM-PED armature and the magnetic field. The flow of cL',-rent rTh

i'Aected by the development of electric fields which oppose the'V
c -, electric fields are manifested through the skin depth introduced

ar1 tr curn-lwas generates a magnetic field whicil rpA
rnm frietic hield of the magnet. An opposing magnetic field might reduce -9

armatur-e and demagnetize the magnet, so it must be considered
nh- he opposing electric field or the opposing magnetic field effectsve-

Scouid reduce the damping constant below that expectedt 'irc-
ci W.talied analysis we find, as expected, that the parameter of qrea'e2
elpctro,dynami c skin depth 8 (meters)

---1-meabiit'y of free space (the armature is made of nnmo2:(
......o 4r. Y Q10 h/in, (3 is the armature conductivity (mho',m), and 7

* .~ . '-~o c, of miotior- In order that the current in the armature c'7-
. .*~~be larger than about twice the thickness of the armature:F,,-

Sdimensions, skin depth should not be a proci~r- e r
ab !;t 50H-iz.

1< ' iimens ons of the armature not affect the design of the s, ys! e.-
* mS 'ggest a minimum armature width to magnet diameter ir.

*~~ ~ , ~Lth of the armature is determined by other design requirements
:-, an affect the high frequency content of the arrriature-ctr i'

feid, howe3ver., if designed properly the damping sysieti v,>

2. iEDSPACE ENVIRONMENT CONSIDERATIONS

~us vL~ t he recomeded passive dainpmn

.........e wthn s;tructu,,ali components of tru.s structures c



for example). However, large temperature variations in space make designing passive
VEM damping treatments difficult (Reference 8). The full temperature variation for an
exterior spacecraft component could be 1500C, from about -500C to about 1000C.
Somr. VEM materials have a useful range of only 20 - 30 oC, making many materials
and, depending upon the specific problem, temperature control elements necessary.
One of the virtues of the PED designs is that, because they are made of metals, they
are extremely stable with respect to temperature variations.

The Curie point (temperature at which magnetic properties change - Reference
10) of all common magnetic materials is many hundred degrees C, far above the
highest expected space environment temperature. The most temperature dependent
parameter in the damping constant "c" (equation 1) is the conductivity. "c" is
proportional to the conductivity (equation 3). For temperatures near and above the
Debye temperature (Reference 11) of the material, the conductivity varies directly with
absolute temperature. -500C is 223 OK and many metals have a Debye temperature
near this value. The Debye temperature of silver, the armature material giving the
largest cim value is 2260K, for example. The ratio of absolute temperatures over the
expected temperature range is 373/223 = 1.67 and so "c" is expected to vary by less
than a factor of 2 over the full temperature range. A look at tables of material data
supports this expectation. If a PED experienced the full temperature variation (an AM-
PED at the end of a solar paddle, for example) it could be designed to operate most
effectively at the mid temperature range (about room temperature) and then the
expected variation in "c" would be less than +30%.

Because the coefficient of thermal expansion for the materials under
consideration is about 10-20 x 10-6 per degree C, the expected length or gap changes
are only about .3%, too little to effect PED operation.

The effects of environmental temperature variation on the spring of the AM-PED
are also expected to be manageable. Considerable information exists about the
effects of temperature on the mechanical properties of metals (Reference 12). This
information suggests that strength may change by ±10% over the applicable range.
This can easily be addressed in the detailed design of the spring. The small
displacements, ±.17% imposed by thermal expansions can be considered similarly.
Finally, the stiffness may vary by ±5% which should not significantly detune the device.

3.0 PRELIMINARY DESIGN OF PED SYSTEMS

In this section we will be concerned with analytic evaluations of PED
performance and the impact of performance upon design parameters. The major focus
is upon the AM-PED, considered in Section 3.1. The analytic approximations and
discussion in Section 3.1 are a background to the consideration of another PED
configuration, the Strut-PED (S-PED). Preliminary estimates do suggest that the S-
PED may to be very competitive in performance with VEM damping strut
configurations. In addition the S-PED does not have any of the VEM temperature
dependence, outgassing, nonlinearity and frequency dependence problems.

3.1 AM-PED PRELIMINARY DESIGN FOR THE 12 METER TRUSS (TMT)

One of the objectives of this section is to compare the predicted performance of
an AM-PED with that of an equal-weight actuator, active-damping system. Active-
damping computer predictions have been made for the TMT in its low frequency



cantilevered position (References 2 and 3). These predictions are compared with an
analytic, continuous-beam model of the AM-PED/TMT combination. In Section 4 AM-
PED performance is compared with the active damping calculations utilizing a ADINA
computer model of the TMT. This later comparison is important because the actual
TMT is not continuous and the beam-model resonant frequencies differs from the
experimentally measured TMT frequencies. The measured ratio of the second bending
to the first bending, TMT mode frequency is 10.72/2.26 = 4.74. The frequency ratio of a
one end clamped beam is 6.27 so the analytic model is reasonable but differences
should be expected between the analytic model predictions and the more accurate
ADINA model. As we will see in Section 4, AM-PED damping is actually more effective
with the ADINA truss model. This is in part due to the fact that the truss does not adjust
its modal shape to external forces in the same manner as the continuous beam. The
analytical modeling provides a framework for understanding how to design an AM-
PED and is used to make preliminary estimates of AM-PED performance. (In the
original study AM-PED effectiveness on a free-free TMT was also computationally
simulated. The analysis is not presented in this paper. The damping was found to be
23% less than the cantilevered beam, for equivalent weight AM-PEDs.) The general
dynamical problem is considered first.

What is required is to solve the dynamical equations of motion of the AM-PED
system coupled to the LSS. The design requirements are that the percent of LSS
modal damping should be about 5% so the damping can be solved for by a
perturbation analysis. In addition the mass of the LSS, M, is much greater than m so
m/M can be treated as a small parameter. As the detailed analysis shows, if Fs(ox, x) is
an expression for the force exerted on the AM-PED by the LSS, where x is the
amplitude of motion for the frequency c, then the frequencies of the system can be
obtained from the equation

Fs(o),x)/M = P3o-g(o)x, (5)

where

m/M, (6)
g() (-2ri + W2(W2 - 1) + 4 r2 )/(4r2 + (W2 - 1)2), (7)
r(o) c/2mco, (8)

W(co) WO/o), (9)

(X) 2  _k/m, (10)

and k is the AM-PED spring constant. In the limit that the new LSS/AM-PED modal
frequencies are very near the old frequencies, QOn, (that is 3 is small) we find that
percent of critical damping, yn, given for each of the LSS modes is

-yn - -Imag{13 i2ong(Qon)x/(M- 1 oFs(Q0n,X)/oaW )1. (11 )

Assuming the TMT can be modeled as continuous cantilevered beam and the AM-
PED is mounted on its free end, Fs can be analytically defined and the operations
required by equation 11 performed. The result is



yn = {20}[2r(Oon) ][4r(Qon) 2 + (W(il.n)2 - 1)2 ]1 = 2 3dn, (12)

where reference is to be made to equations 8 and 9. Assuming the mass m is fixed at
the value of the active damping actuator, we can choose the AM-PED parameters c/m
and woto either maximize the damping for a particular mode or damp more than one
mode. We also note that if the LSS were a one dimensional system of mass M, the
factor in curly brackets would be 1/4 of the equation 12 result. This means, at least in
the limit of small frequency changes, that the effective mass of the cantilevered beam
is 114 of its actual mass, for all modes when an AM-PED is attached to its free end.

The active damper is effective for both the first and second bending modes (0o
and 001) respectively so we design the AM-PED to compete with it and also damp the
first and second bending modes. We are interested in obtaining the best damping we
can for the lowest mode and still obtain reasonable damping for the higher modes. As
the detailed analysis shows, for a given r and Qoo in equation 12 the numerator can
be minimized by choosing

W(Wo) = 1, or w0 = 0 )o.

The damping of O is then maximized with the choice

c/im = GO. (13)

As discussed in Section 2 this c/m ratio is easily achievable with the magnetic system.
The choice of AM-PED parameters defined by equations 12 and 13 imply that for QOn
>> QO

Yn - 70[P)0/D0n], (14)

when

yo = 23. (15)

The TMT active damper predictions ,-:ere actually made with two 4 lb dampers
at the free end and two additional 4 lb dampers, one at the center and one one-quarter
of the length from the free end. A worst case comparison is made by using only one 8
lb AM-PED (equivalent to two 4 lb dampers) at the free end. Since the TMT is 220 lbs
and the ratio of 000o/l = 4.74, as stated above, we find for the TMT that

' = 2 x 8/220 = 7.3%, and y1 = 7.3%/4.74 = 1.5%. (16)

Table 1 shows the TMT active damper predictions as a function of four velocity feed
back schemes. The AM-PED is therefore expected to be very competitive with active
damping systems. In Section 4 we will see that there is reason to suspect that the AM-
PED may, in some circumstances, be a better damper than the active system. (The
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overall damping ratio with an 8 lb AM-PED is 11 % for the computer simulated TMT,
50% greater than the analytic, continuous beam result.)

Table 1 TMT Active Vibration Control
(From Reference 2, x Bending)

Closed-Loop Modal Damping Predictions

LOG, LTR

Open-Loop output MEOP Overlapping Component
Feedback Decomp Synthesis

1st Bending .80 9.36 4.49 8.02 7.24

2nd Bending .16 1.45 1.38 3.19 2.97

One can also estimate the TMT modal damping by using a one dimensional
analog. For driven, single degree of freedom system the damping is (2T)-1 , where T is
the transmissibility. Using this relationship, where the cantilever is base driven, we
obtain, 6.6% damping for the first mode and 1.4% damping for the second. These
numbers are consistent with the results in equations 16. But again, we have here used
a continuous beam model for the TMT and differences are expected for the real
structure.

3.2. STRUT-PED (S-PED) CONFIGURATION

A S-PED would be used very much like VEM damper struts used in LSS truss
structures. For example, experiments were performed with the TMT using VEM
diagonal strut dampers (Reference 2 and 3) in all bays (see Figure 2). The resulting
damping was 4.2% for the first bending mode and 7.0 % for the second bending mode
but the weight of the TMT was increased by more than 100 lbs (45 kg). It is clear that
the struts could be removed from those bays experiencing the lowest modal strain
energy and the damper weight would be reduced. However, the damping would be
reduced somewhat as well. The TMT with strut dampers in all bays probably
represents the maximum TMT damping possible with VEM.

A rough comparison of what is possible with a S-PED can be made by
employing two diagonal S-PEDs in the first TMT bay (see Figure 2) and choosing a c
to maximize damping for the first mode. A transmissibility analysis is then used to
evaluate the damping for the second mode. The detailed analysis indicates that under
these circumstances the strut dampers operate very much like the Isolator-PED of
Reference 13. The Reference 13 analysis showed that the damping of the first
cantilever mode was maximized at about 30% when

c/m = 1.5 i)O,. (17)

This equation is very similar to the AM-PED design equation (equation 13) except that
in the case of equation 17 the mass is the effective mass of the TMT in its first mode
and not the mass of the AM-PED. As discussed in Section 3.1 the effective mass of the
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TMT is 1/4 the total mass or 55 lbs (25 kg). We saw that about 7% damping was
expected with two 4 lb AM-PED masses, larger masses producing greater damping. In
the S-PED design the moving mass is the system itself. The larger mass implies
greater damping.

VEM STRUTS
VEM

Twelve
Meter Truss

Aluminium Tube

~S-PED

Figure 2. Twelve-Meter-Truss, Damper Strut Configurations.

The c that we need in order to obtain this large damping is given by inserting
the correct parameters into equation 17. We need

=25 x 1.5 x 2n x 2.25 = 530 kg/sec, (18)

or if two struts are used per bay c = 265 kg/sec for each strut. For a particular design
we can achieve the required c with a total magnet mass of 2.1 kg (4.6 Ibs). With this S-
PED system the expected damping, predicted from a base driven transmissibility
analysis of a continuous cantilever beam, is 19% for the first bending mode and 2.5%
for the second bending mode. We have tuned the S-PED system for the first bending
mode and it is most effective for that mode. The 19% damping of the first mode differs
from the 30% expected from the single degree of freedom Reference 13 analog, but
given the difference in the approximation methods numerical differences are expected.
In addition, experience with comparing the AM-PED, continuous beam, analytic
results with the TMT computer simulations suggests that the analytic damping
estimates are a conservative lower bound.

It is difficult to directly compare the analytical S-PED analysis with the TMT VEM
damping data. Theoretically, with a factor of 22 less weight (excluding the weight of the
struts and armature) we have a factor of 4.5 more damping in the first bending mode.
This seems to be a definite advantage. The S-PED damping in the second mode is,
however, about a factor of 3 less than the VEM system. It is clear that by detuning the
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S-FED the second mode damping could be increased at the expense of tK r-I md
if that were desirable. Although the analysis has not been performed, the 'o
is that th e S-PED would be superior to the VEM damping strut system. 9c~u"-'-:-
VEM system wvith an S-FED would have a number of advantages-(
no outgasslin problems, (2) designing a damping treatment w;'ould b?~ S. i,
the FED system is linear with respect to amplitude and c does -not c, 1I
frequency, (3) heatinig coils would bEL avoided because the FED s- "7r:
changc. .ery little with temperature, (4) the same FED sy'stemn cci" - : od
anywht;re on the LSS because of the near temperature independence of t

4.0 STRUCTURAL DYNAMICS

In Section 1, it was noted that the AlFWAL 12rn Truss (TKPT)
represents large space structures of generic interest. To supprr- s:s th!' 'b-'"'
such systems, the application of the ED as an auxillary mass damnper ~c
to be very, promising. In Section 3, a preiliminarl:y design AM-FED for the
12m Truss was discussed. It was observedi ihat its effectiveness, reliab;;tky
compare favorably to actively controlled -and mechanical passi ~ve
alternatives.

The structural dynamics of the TMVT with AM-FED is now cor-.'~'l
analyzed -to furthel investigate these promising possibilities. The mcdla: ;7,
considered first to gain insight and then realistc transient excitations -re .' ci
Next, the effect of AM-PED parameters on performance is examined.

4.1 MODAL CHARACTERISTICS

The study be gins with the natural frequencies andl mode shapes OT cc
syste;m-. ' eowere obtained through the ADINA finite element rnccei o2
(Reference I .This describes each of the 16 bays of the TMVT with a 2Z--n-
elerment Coim-piete restraint against translation and rotation is a~ m

suppert.'he AM-FE D is miodeled as a lumped mass connected to SY"r jn
throurgh a genera! element having concentrated damping and stiffness. :; l,3
dlegree!; c; freeom describe the planar flexural vibration of this svs'emn. 'Pm
charactercsl:cs o' this response were found through a determinant search

W1nr-Dr'pedl TMT was first consfidared without the AIM P
ler i a v 0 47' in. and the total weight 220 lbs in accarc:r-

data. I4 . lftifni-sc parameters of the beam elements are adjustd r,

two ~0 ie~~7 m--Sjired by the AFWAL. These are given in Table2
n cc~~.Kcr cis w-o!l as flexural deformation- The corresponding jh

--rc .nD . cor. PIP 2and tLwo lobes in the first and second mrndes, resp,?cti.

i-. Luence of the AM-FED on these caaI'isi' w'>
o' h prehlminarv design are ('osidjere d w

~tTeA-E eign c,'.,ses the system 'nto v.
c -;~~.rJarniPed fiundarnent , - ode of the canflI1.e F

f r' pc appear in TabIc, _2 v3, Figure 4, respect:';? v

hi) - ~ ~ q lower frequC - than the undamped
c -y r a ss mo a t n ~ yvti ff.'?

nrthan thce fund-3m ne, ;nd 3 1- a (.)(ilr



opposition to the beam. In both modes, the large amplitude of the auxiliary mass
motion will be effective in dissipating the beam's vibration. Note in Table 2 that the
second flexural frequency of the beam is minimally influenced by the design. Neither
is the corresponding mode shape, Figure 5, in which the auxiliary mass experiences
little displacement.

4.2 TRANSIENT RESPONSE

With the benefit of the foregoing modal insight, the response of the system to a
transient excitation is considered. A uniform, unit, initial velocity of the beam is
specifically chosen. This approximates the excitation of an impulsive maneuver by the
spacecraft from which it would be cantilevered. It may also represents the loading
produced by the fluence of a hostile impulsive laser attack on the platform. The
response to this initial disturbance was calculated using the ADINA model through a
direct time integration with a step of 0.010 sec.

The resulting tip deflection for the undamped case is shown in Figure 6. This is
dominated by the fundamental mode at 2.26 Hz. With no dissipative mechanism in the
system, the oscillations continue indefinitely. Such behavior is not consistent with the
precise stability requirements for many space platforms.

Fortunately, the situation improves dramatically in the response with the
preliminary AM-PED design which is superimposed in Figure 6. This response is
initially dnminnted hy the fundamcital bending modes. However, these are effectively
damped in a few cycles. A least squares fit of the response indicates that it decays with
an exponential envelope corresponding to 6.2% damping. This is almost twice as
large as predicted in Section 3.1 for the continuous beam. (Note that in Section 3.1 we
considered an 8 lb AM-PED, here the simulation was for a 4 lb AM-PED. Equations 6
and 12 show that damping is expected to be linearly proportional to AM-PED mass.)

4.3 PARAMETRIC ANALYSIS

The above transient analyses indicate that the preliminary AM-PED design
should be quite effective in suppressing the vibration of large space structures.
Accordingly, the influence of its design parameters on this effectiveness is studied.
Auxiliary mass and frequency tuning is specifically addressed.

To examine the effect of auxiliary mass, this parameter is doubled above the 4
lb preliminary design. In accordance with the preliminary design procedure, we also
double the stiffness and damping values to maintain the same tuning relative to the
cantilevers fundamental mode. The response with this 8 lb device is compared to that
previously calculated for the 4 lb design in Figure 7. With the additional mass, the
vibration is suppressed even more rapidly. The equivalent damping, Table 3, is now
10.9 %. Thus the damping effectiveness increases almost linearly with the size of the
auxiliary mass, as suggested by our first order perturbation analysis.

To examine the influence of AM-PED tuning, the auxiliary mass is returned to
the initial value of 4 lb. In lieu of the preliminary design of Section 3, an alternative
exists which attempts to limli the response of the primary system over a range of
frequencies in the neighborhood of its fundamental mode (Reference 14). The
parameters of this "optimal" design for the cantilevered TMT are given in the third row
of Table 3. The response of this system is compared to that previously calculated for



our preliminary design in Figure 8. The effectiveness of the AM-PED is seen to be a
function of frequency tuning. For the uniform initial excitation imposed, the "optimal"
design achieves 3.6 % damping and is less effective than the preliminary concept.

TABLE 2 NATURAL MODES OF 12M TRUSS

Beam Character Undamped Frequency Hz AM-PED Frequency, Hz

Fundamental 2.26 1.98
2.56

Second 10.70 10.71

TABLE 3 AM-PED EFFECTIVENESS

12m Truss mg c k Damping

Configuration lb lb-sec/in lb/in ratio

Cantilevered 4 0.1464 2.069 0.062

Cantilevered 8 0.2928 4.138 0.109

Cantilevered 4 0.0487 1.577 0.036

Free 2* 0.422* 34.4* 0.048

*Values for ech of two AM-PEDs. Free-Free analysis not presented.
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5.0. CONCLUSIONS AND RECOMMENDATIONS

I- ?'IS Study the feasibility of Passive Electrodynamic Dampers (PEDc),-;r! Ldrf-
Sxca T~uctures (LSS) has been investigated. The overall conc'wlr-

plralirr -ar'/ FED designs appear very promising, being competitive and in mann! wa,.-
suiperior to current active damping and passive damping LSS technologies. nre
overall ,po-nnme ndation Is that a det-.-iled design and experimental test programb
u n cie rt, :- io verify the conclusions of the study. The detailed conclusions o. Ihis
study presented below.

The AM-PED operates by converting LSS vibrational energy to the kinetic
energy of t1he magnetic-system mass, This energy is 'then dissipated through chmic
neatiq In The ,7imature. Mechanical springs are used as a restoring force ;w-d 'he
systemr is "toned to damp over a range of LSS modal frequenries. Becauise of the
simrn -le PED force relialionship, analytic LSS damping estimates can be ma_-de when

driW~CLSS ocdal solutions exist. Curmputational solutions are required Tor -ea;;sl~c
L-IS +*,r,,1- -truure which only roughly approximate continuous, analyticaily-tractabie
sys-?!ms.

Bes,,des computationally evaluating the effectiveness of the PEDs it was
C025i,,derreo important to compare PED effectiveness with experimental dat~a and
pr;?te3st pr-clictuons for other damping systems. The AFV4AL 12 Meter T russ (T MT)
expEKri-irVl t.'ere chosen for comparison. The majority of analyzed TMT data is for thea

owI'qu~~cjcantilevered position. The AM-PED, designed according to tohe analytic
Pr~ys11-d the TM] were ADINA modeled.

Th;-e _,onclusions of the study are the following:
(ii The maximumn practical LSS c/in ratio is about 500 sec-1 in inks units.

,2 ' -~ Ti' e maximurn c/in ratio dependents on magnetic system size.
3, T. , onirant effect which reduces c is the dependence of skin depth on the

fmqL~eiicy REID designs should be independent of frequency below 50 Hz.
d lmping should be independent of amplitude for expected LSS vibrational

(,'F") dernping should vary by only about ±30%/ over the full 1 500C Space
Ilvllr- i" te nperati-ire variation.

~- o TMT bending-mode, activte-dampina predictions, lor r rugo!y
daniping system (8 lbs - actually the total active damping actua~or

heA-PED egt) h A-FED is more effective T'ner~

7damping is expected to be about 11%/1. The largest act'v vr
S4% Inor the first bending mode. The AM-PED is not only e.,, cc~

K - '~~~ rimping in performance b~ut more reliable and cost efcim
aair power suppiy, motion sensors or a comrp,.ute c,.;

afth A FD damper is only s: ci~ly decreased (227--

frtefree TMT ;analysis not prese 'ted in this paper)
-. rvstem is expected to be cornparable or superior W-H :tru-

-f~eorm -nce, should weighi 1,-,-s and be far surerior 'A,, -J
o~tquR2Oand cal, ht
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A METHOD FOR THE MEASUREMTIENT OF
THE COMPLEX COMPRESSIONAL

MODULUS OF THIS LAYERS

.1 D. Rogers'

Sandia National Laboratories

Albuquerque, NMI

ABSTRACT

A mietihod hias been developed for the diict measurement of I he coniplex, nom-

pressional m~odulus of thin layers at low frcqueticies. The test method utilzes a11
eluctrodynainic shiaker and a special test fixture which minitains the pl-nc strainl
mtate of the thini layer. Preliminary tests have been performred onl highl dailmng

miaterials withi good results. An improved version of the test fixture i., hIeng d.

iiec to 'improve th lifutl di stanit boundary conldition 3il-nula'

FULL PAPER NOT AVAILABLE FOR
PUBLICATION
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THE EVALUATION OF YOUNG'S COMPLEX MODULUS OF

VISCOELASTIC MATERIALS

G C~ Os - f M. T. 

~re r,11F a re sii t o c > xterizp, the ta a t-:e c e I ;..r S - ,

Ther mjet,Mw V readji ap~2I rat e C, belamc with c.Oiat ic ci 1

1, 7 7  1: tanilid 'letoc, foty s a $iai : . c
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e~Ql~ecb tefatthtsimp~ler analyt ic al deve Ioomrit$ anco

G) n e ntal rigs are required.

Van Qort [11 and Oberst and Frarkenfeld 23 first studiel the

Oc--haviour o' 'thin fixed-free beams coated with viscoelastic rnateriai's- or'

one, or Doth sldes (Van Oort only). The relationships derived Ihy Van ,

i-c~s -31 thi assumptions, are not used for the inves_:t~qatiorI ot

-,a~ton larnpirig materials having a high loss factor, The worr 01yJes

and" F-anrwentelc was aimed at vibration damping materials ravina j low
e&ast c rTVodU'us E and a Ihiqh loss factor rjThe so-called (Ar1!a

.~/>i'c zs rice oeen generally accepted and is now standardized by the.:

Z:1N (]aind the ASl-TI [5]

S~cnwarZ11 analyzed, in a more rigourous manner, vibrations 0of beam-

,ade up of two vIsLoeiastic materials [61 He Conciuded that Van Cor' ana

rand F-rark&enfeld tlhe-orie-- were 'simnpk fied versions of his owi

aL~~aIn hecause, in their assumpt ions, tney had neglec ted th'e effects C),

I~ Qi ewe flextirai and evtenslona' mnotions. He also pointed t

fE-r .7.-o/mrfletic beami made of two materials navirrg dIifferent los,

or~ ut a, 'ibre was moving throuqh the crs-etirata

e:v~a~dUni 7aayiwas developed for a triree-layei

ayst~mr i :~~ I e Q<:. n,, ir-.hear type damping ra mnlo

aot e S bejr- n "-k s-pec'-al cas-7e of unconstralnedl arv'; inj;

6et: tc"auyn(e p' e:saft 1 r lavem), RKU equations_ rr~~

to ;e e~e y nb <-an e, r eld
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Nashif [81 developed a method, uc:,mg the Doer starr~e

metal supporting beam coated on Ootrn sides with equals til'esso

vicoeiastic rnaterial Bendinc; Qroblemns a ~h-r*~w e~~a

cak.,sec by the large riference betweeln thermal T CeKs xaso

v roeia st.i c m a t er ia anIc ,rd inetal>1 were q:mato So: 'y.rx

mior, to Schwarzl's (61j neutral f ib!-r movement. cI-nj lna-

Nacshif to furthier Justify the use of syromet mrc cDec-,,(e.n

The AccTM has r urdished a "'Standara itdfrtear nVcao-

rDamp-inq troperties cf ilaterials" (C.1) which 3.- y CC'

proposej by Oberst and Frankenfeild, Nashif and Poss, Krwoa, .r'.a

,lo tunately, these methods c ontain a number )f acckump-, r t -,at rrverr

iperr froum be ing gener a]ly appI icable.

The carmng effects of the supporting mnaterial are pe t,a

- Dqenvaljues equations are derived wrthout ronsideriro toe ef,.ects

of damrplng (added st! f ness , nha se 1 aq, ft c

T-he qIloal locse factor s ca-cuiated wltri' methocvxnY

J4eveiooed for , jtiy arnesinqie decree of freeciii v

* alf ;oweir ba-ndwidth or locarithmic cerrr,'t

i) t i c. an e o r)m;o f , r c: a drnr;r Ih {er o.~ ( r a

~u :CO u ar vVw ifl;,., 1 r

C)j~



THEORETICAL ANALYSIS
The use of a root-excited beam enables one to use both amplitude ant

phase lag measurements for the characterization of dampng. The

visccelastic rnaterial's elastic rnodulus and loss factor can be oeterrmlnea

from experimental measurements, without using any approxirmations or

assumptiors. This proves valuable particularly for materials having high

loss factors. Symmetric test sections are used so that the neutral fibre is

rerna"-s in the geornetric center of the cross-section and that no thermally

irduced bending occurs.

y V +(dVdx) dx

IT + (drl/dx) dx

dx

X

Figure 1 Free body diagram of differential element

A, r', Ltcdy ( -agari a C,1ferential element of length dxof a beam

shown in !qure B By ecuat[ri tne forces in the Y direction to the

corresporinq ;ver a fir-.e Anc ,/ surnrning the moments about tre

QMB-4



errnient's center of gravity, we obtain the standard equaticr, cf mnotiljr

Euler bearns (shear and rotatory inertia effects nieglectec.,

rn a2y/at-i . 82M/aX2 = C)

where m Is the masc. per unit lenqt-ri Fromr the rlassica' therory of

bending of beamns, the bending moment -s relate6 to the 'rateral ntc

through tthe flexural r1idity termn Thic. equationi can *aliot

viscoelastic materials by replacing the stanoard elastilc YouiQ s, radulus E.

b~y thie comQplex mnodulus E*. We then have

YL

bO h2 -

Figure 2: Test beam geometry and s layout
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M = E* I a2y/ax2  (2

Combining equations (1) and (2) we get

m a2y/at 2 + (E* I) a4y/ax4 = 0 (3

For the beam shown In the test section schematic view (figure 2),

mass. stiffness and inertia properties are

m = P151 + P25 2 = plbhl + 2p2 bh 2  (4)

E* I = E ( I+irl) I + E2(I +IrI2) 12 (5)

I = bh1
3 /12 6)

'2 D oh 1
2h2/2 + bhlh 2 + 2bh23 /3 7)

',' 'he use of the followin parameters

H = n2 ih1  (3'}

6H + i2H- + 8H3  (9)

e,'ua on. 3 t- :7) qive

CBB-6



12 (p1 + 2p2H) a2y/at 2 +

hi 2 tE(I+i I) + KH E2(l+112)) d4y/ x4 = 0()

By separating space and time solutions and by defimr:; re q

parameter as

= +12 (1p -2H) (

h12 {(EI+ KH E2) + i(lI EI+ KHTl2E2)}

we have

d4Y/dX4 - q4 Y =0 12)

For the beam shown in figure 2, the boundary conditions are

Y = YO dY/dx = 0 at x = 0;

d2Y/dx 2 = 0  d3 /dx 3 = 0 atx = L. (V)

Only the motion at the free end is of interest. It is found by sulvinq

equation (12) with the above boundary conditions and then puttirg x=L

D v',inq by the motion at the driven end gives tne ratio of amplitude AR

and the rhase lag 9 between the free and driven ends

AP e-ie = cos V + c osh %Y I

I+ cosI osh%

CBF3-7



where "=[ 12 (gj + 2p H) ( 2 L-1 }114 = qL = + I] 5

Lhi 2 (EI+ KH E2) + i(1 I E1  KIHrl2E2))J

Equation (14) can be transformed into two functions of unknown

parameters a and p by equating the real and imaginary parts on both sides

of the equation. Once simplified, these two functions are

AR (1 + cos m cos P cosh % cosh P + sin c& sin p sinh a sinh ft }

- cos 8 (cos M cosh p+ cosh a cos p ]

-sin (sir sinh- sinn sinp) =0 (16)

and

A (cos M sin P sinh % cosh -sin cos P cosh % sinh

+ cos 8 isin % sinh p - sinh m sin p

-sin8 (cosocosh + coshocosP ) =0 (17)

These non-linear equations are solved numerically by a Newton-

R poson scheme [14]. Reasonably close startIng values (ao, Po) are required.

For that nurpose, we define the following two parameters

A - ,.2J.iLLE (18)

12 (pi 2p2H)

ar) a

CB B-8



12w (p, - 2p2H)

Equation (12) then becomes

(A - iwB) d4Y/dx4 - 62 Y = 0 (20)

which is identical to equation (10) in Strella's paper [131. With the current

symbols, eauations (30), (31) and (32) of Strella become

A -( ] 2 (21

6o2 - F2)

B L2 (16 w1L2)
a0

3 (16a 0
2 -F 2 )

F =5.478 + 2 /77502 + 6.1 5 AR2

1 689 AR2

,Nnere or is a reonant frequency, ao is the eigenvaiue of the eq.ven

m:i~ r~netrFr for , fixed-free beam (ao =7.875, 4'94, 7855, etr) ire AR

i5 "I's previously defin~ed Approxirnate values for E2 and T12 ar fouf I .,v,

i'Ja. rn (18) and (1Iq) These approxlmaions, are giver) by

CBB-9



E02 = i2-(i +_22H) A- i (24)
VH h12  KH

and

2 = 2p2-) w-E (25)
KH hi 2 E0 2  KH E02

We then obtain from equation (15)

MO = 4-/R cos (#/4)

po = 4-/R sin (*14) (26)

where

R = 12 (p]i+ 2 H) 2 L4  (27)

hi 2 t((Ei* KH Eo ) 2 + (rlIEI+ KH T1o 2 EO2 )2 1

and

- tg- - I n,--40 2ELO2 - (28

,Ei. KH Eo2)

These starting values W and Io are now used to Iterate to the final

solution 'or v. and P with the Newton-RaQhson method The numerical value

of the cornDlex anqle V = (,+llp) is now known. AqaIn rearranqinq eauatior,

(15), we obtain

CBB-10



(E; +KH E2) + (riE+ KH9 2E 2) = L 2_.t 2H) w2 L4  n

h12 (M + 1 P)4

The numerical values of elastic modulus E2 and l¢ss factor ij2 of the

viscoelastic coating are found by equating the real and imaginary parts or

both sides of equation (29). After simplifications, we have

=1E 2 4 %o4 + P4 -6 2p2 1

E2=I2_( j~±i +2P H)j .L o 4 P4 - -r (30)

KH hi2  % 8  -6 %4P4 - 4 ,2p2 ( .4 .4 ) Jr\H

9nd 2 = _ l _2I2) W2 L4M4 o (02-c42) -L -

KH h1
2  8+P38 - 6 C(4 P4 - 4 2P2 (OA-P41 4 KH E2,

To evaluate the complex modulus E*2(l,) of a non-self-suoiportino

viscoelastic material, the procedures outlined below must be followed.

1- record the following parameters, with appropriate units L. p1, hl.

E 12 qjI p2 and h2,

2- evaluate H and KH with equations (8) an)d 9),

.- record amplification AR, phase laq 6, resonant freaueerv sr and

mode number so that Strellas approximate method can be use," as af,-

approxmat lon,

4- evalua te A, B and F as per euatiOr; 21). (it . ,  wor 2r

io rO.r te resonant frequency o and eiqeiva, e ao,

cqB-I1



5- evaluate Eo2 and T102 with equations (24) and (25),

6- find starting values mo and P0 with equations (26), (27) ana (28),

7- iterate toward final values mand P;

8- evaluate elastic modulus E2 and loss factor 12 with equations

(30) and (3 1).

CONCLUSIONS AND RECOMMENDATIONS
When testing a non-self-supporting material, the support beam can

be manufactured out of a viscoelastic materidi because its own damping

characteristics were carried throughout the derivation of the equations

For self supporting materials that can be shaped as a beam, the equations

defined in this paper are simplified by eliminating all terms containing 2

as a subscript. The equations then become Identical as those derived Oy

Ostiguy and Evan-lwanowski [10].

An experimental setup similar to those used by Ostiguy and Evan-

lwanowshi [10] or Strella [13] Is recommended. Strella's setuD is

particularly useful because it allows quick free length changes to be made

Tne length/thickness ratio should remain greater than 50 so that shear and

inertia effects can be neglected Non-contacting electro-optical or laser

instrumentation should be used for amplitude and phase lag measurements

Tests sho'.ild be done Inside an environmental chamber to evaluate the

e'fects of temperature, humidity, vacuum, etc Frequency and temperature

effects can be combined, with the use of a reduced frequency nomoqram

CBB-12



15, 161, to orovide a completf. cescrimtior of dampinga~oete ~

m'atei ial on a single cnart

The approach proposed ir tIN5 CWac < w ne ~cevaia~ecK

and precisely the Yournq's- cvnp~ex muia visoeia-:1fl-c mate-als

Additional work 1- being (lone to acapt 1r!5 Rjetho K ;rr,;',Ef

rnodus- evaluation. The mnethod can, Le -J3ed for ari merLwittC>ut a,>

restriction. It is fast, accurate and its repeataboilmU, as been demnorstratec

[i01 It brings significant improvements over existing tes rneth1-oO.-
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NOMENCLATURE
ao eigenvalues for a clamped-free beam

A, B parameters defined by equations (18) and (19)

AR amplitude ratio of free vs driven end

0 beam width (m)

E elastic modulus, real part of E* (N/r- 2 )

Eo approximate value of E (N/rn2 )

E* Young's complex modulus (N/m2 )

F parameter defined in reference [13]

G* complex shear modulus (N/rn 2 )

h thickness (m)

H thickness ratio

unit imacinary number (i2 = -1)

area moment of inertia (M4)

KH = 6H , 12H2 - 8H3

L free length of beam (m)

m mass per unit iength (kg/m)

V'! bendinq rncrnenz (N m)

qL cornpie,, frequency parameter

P parameter defined by equation (27)

q cros?,-section (in2 )

tM e

V sr'ar f r, ,'e

x stat)cr) 3'or, g beam (n)

(MB-14



y~v ji) tavjvrc -s) errer of ~arC:

'(K,) ~vibrationruitc()

YO v~brati'rr arn 11 t~je a~ iver, er.( '

y ~~~vibration ampliihtu®j ,,4t f 'ce eric' ( T

Ot, (3 real anti imaginary p.artc of T'

oPO approximate va,':,jec of o an,

11 0%factor

90 approximateva'eo

Aarnguiar clef ormatior, rac)

e ~asr 'tag betweer,; free rd driver en-,

p en;v(kg/rn3)

* ~~~angie fie yea:o 2;ra
P c~orn QIey angle ra

w q~~~rciJ!ar ccerCofvr-.r a/
r cjWa'fer;rc
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ROLE OF MORPHOLOGY IN DAMPING
EFFICIENCY

L. H. Sperling'

Lehigh University

Bethlehem, PA

J. J. Fay
Lehigh University

Bethlehem, PA

D. A. Thomas

Leliigll Un iversity
lBetlilelem, PA

ABSTRACT

The role of multiphase morphology inl damping was explored using interpenetrating
polymer networks and lat-'- blends. Several polymer combinations were employed
as model materials. The ,cluded acrylics and methacrylics, styrenics, polybuta-
diene, and poly(vinyl methyl ether). The loss area, LA, under the E"-temperature
curves was measured on a Rheovibron at 110 Hz. The results were compared to
one-phased statistical copolymers.

Several IPN compositions were found which damp more than expected, based
on the group contribution analysis f,,.nd to hold for homopolymers and one-phased
statistical copolymers. The damping increases are interpreted in terms of phase
(,,lntihwity aJd stiffness. III gtiieril, high tanb values would be expected in mor-
pliologies where the lower glass traisition polyvier forms the continuous phase, and
the 1 ,her glass transition polymer forms the discontinuous phase.

FULL PAPER NOT AVAILABLE FOR
PUBLICATION
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THE THERMORHEOLOGICALLY COMPLEX

MATERIAL

Ronald L. Bagley1

Air Force Institute of Technology
Wright-Patterson Air Force Base, OH

ABSTRACT

An approximate quantun mechanical description of molecular energy transitions

leads to fractional order time derivative descriptions of linear viscoelastic stress re-

laxation in polymers. The resulting fractional calculus stress-strain constitutive laws

are mathematically compact and suitable tor rheological and engineering analyses.

The mathematical form of the models suggests a modification to the thermorhe-

ologically simple material that enables the description of temperature-dependent

(:hallgs to the shape of curves representing a material's modulus in the trausition

region. The fractional calculus models are seen to be extensions of the traditional

exponential models of stress relaxation.

ACCEPTED FOR PUBLICATION IN THE
International Journal of Engineering Science, 1991
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METHODS OF REDUCTION OF WIND INDUCED DYNAMIC RESPONSE IN SOLAR
CONCENTRATORS AND OTHER SMALL LIGHT'IWEIGHT STRUCTURES

Monte A. McGlaun
LaJet Energy Company

ABSTRACT:

Wind tunnel studies indicate that solar concentrator structures with low damping
properties are susceptible to dynamic wind loading characteristic of the earth's boundary layer.
Solar concentrators are sensitive to deflections in optical systems and can be costly when
required to have minimal deflections. T7he cost and performance characteristics can be
improved through structural design approaches to reduce dynamic respome. This study
evaluates the benefits of various methods to control dynamic response: passive darmping,
multiple supports, friction connections, mass alterations, and beam length modifications.

The Modal Strain Energy Method (MSEM) is an efficient analysis too! for evaluating
overall structural damping on complex structures. Modal strain energies were found using a
finite element analysis structural program. The MSEM was used to analyze the complex
structure of the LaJet Energy LEC 1900 Solar Concentrator. MSEM methodologies are
described in-depth.

Viscoelastic (passive) damping and bracing were found most efficient at reducing dyn.amic
response in the structure. Braces were located to develop large modal strain energies. When
bracing and damping were located to develop high modal strain energy for particular modes,
system loss factors were notably improved. Damping was effective when radial girders were
dynamically involved in the mode shape definition.

Monte A. Mc(ilaun, I.I:.
Director of R & 1)
LaJet Energy Compainy
3130 A,tilley Road
Abilcnc, TIX 7900o
(9 11)8 ,-8800



1.0 INTRODUCTION

1.1. PROJECT OBJECTIVE: To apply the modal strain energy method (MSEM) to design
damping and bracing to achieve greater dynamic stabiliy in a
large solar concentrator dish.

1.2. FUNDING OF STUDY: SBIR Program, DOE Contract No. DE-AC05-87/ER80519
DOE Report No. DOE/ER/80519-1

1.3. BACKGROUND

LaJet Energy has designed, built, tested, and marketed solar concentrators since 1978. In
1983 and with internal dollars and private funding LaJet Energy designed and buily
SOLARPLANT 1, a solar thermal electric-generating power plant at Warner Springs,
California with 700 LEC 460 solar concentrators.

FOCAL P E .'t L U v OP - /

- ~fl 1D.. hAvIth rFPIlM THf
x ~ ~ ~ ~ 1 1 ,1 ' 110,l F -FIN P '.T,

'/"/... I . *~

F M-

Figure 1 - I-aet Energy's DOE Innovative Concentrator Overall Side View
(from the east)

LaJet Energy's solar concentrator technology is licensed to Cummins Power Generation (a
wholly owned subsidiary of Cummins Engine Company) for worldwide sales for electrical
production. Cummins is funding the commercialization of a free-piston Stirling engine - solar
concentrator electrical production system. The project is in the second year of a five year
program.

The structural design used in this study is designated the Lar(, Scal' Inofatit Cottentrator
(IC). LaJet Energy designed the IC under U. S. Department of Energy (DOE) cost-share
agreement (DE-FC(4-85 FT30171).

CCA-2



The IC accommodates 95 silver polymer film mirrors to reflect 135kwth through a 20 inch
diameter aperture. Figure 1 shows the IC at solar noon and at the vernal or autu mna equino,(.
The structure is comprised of a stationary support system and a tracking support svstem. ";.he
platform, interface, and cantilever are the stationary structure. The lower mast, L rders, space
frames, mirror facets, tripods, and receiver are the tracking as ;enbly.

The tracking functions are performed under microprocessor control that operates one or both
of the two drive motors to keep the optical axis (global z axis) pointed to the sun. The array
of concave mirrors reflects and focuses the incoming solar radiation int(; an openmn in the
bottom of the receiver. The receiver can be any device designed to accept concentri- ted solar
radiation for a purpose such as creating steam, generati~ag clectricity, or high te=mperature
materials processing.

2.0 STRUCTURAL LOADING

2.1. GRAVITY

The Wet Energy solar concentrator structures have high strength-to-weilht ratic, herefore,
gravity loading is usually secondary to wind loading. Ice and snow loading in the northern
tier locations may be large and require special design situations (solar d(c'iceA it,, ,nore likely
to he located in warmer climates).

2.2. WIND

Wind is characterized as a spectral loading, and the majority of energy inparted occurs at
excitation frequencies up to 30 Hz. Since solar dishes have very large surface areas, wind is
the primary loading. Wind forces near the earth have a turbulent boundary layer with
characteristics that depend on the roughness of the surrounding terrain. A model of the
structure under study was tested in the boundary layer wind tunnel at Colorado State University
to determine the loads at the main pivots of the tracking array but net the dis,,ributed loads

19].

2.3. APPLICATIONS

For example free piston Stirling engines are currently being tested o LaJet Energy
Concentr, )rs by Cummins Power Generation. The engine opcr,s at 0) liz ai a .5 mm
amplitudc. ;'he mass of the associated engine mounting components on thy. ( v c, ,cernraor
reduce the amplitude by the inverse ratio of the masses. The conceWntratnr! vc' exhihited
destructive modes in the region of 60 Hz. Application d,,niam i. Ikg ij , IC., ,; a de'cn
issue than gravity considerations.

2.4. SEISMIC

The primary destructive mode of seismic activity is through the app Iliatit) i -, ),f i .1 , rces.
Since the dish is designed for wind acting as a large laterml load and sinc w " ',
strength-to-weight ratio, seismic loading is alwaVs evaluated hy is tvtically a , vi.v,

of design.



3.0 ANALYTICAL MOPEL DEVELOPMENT

3.1. FINITE ELEMENT ANALYSIS (IMAGES 3D)

IMAGES3D Finite Element Analysis Program is a copyright of Celestial Software, Inc., 125
University Avenue, Berkeley, CA 94710, telephone (415) 420-0300 [13]. The distribution of
the components of the finite element model of the tracking portion of the IC is shown. All
materials used in the As-Designed model were steel. The components of the IC have been
sized, modeled, and constructed as shown in the tables following:

696 node points to describe the geometry

986 beam elements drawn from 20 different cross-sections

290 plate elements to describe the 18 inch diameter, 3/4 inch wall Lower Mast.

Girders 5.56" O.D. x .188" wall

Tripods 8.625" O.D. x .188" wall

Space Frame Beams a. 1.00" O.D. x .035" wall
b. 1.25" O.D. x .035" wall
c. 1.163" O.D. x .057" wall
d. 1.510" O.D. x .065" wall

Lower Mast 18" O.D. x .75" wall

Simulated Engine Weight 4,400 lbf at z = 509 inches

Table I - Structural & FEM Components for the As-Designed IC

(?'A- .1



View in line with the sun View at easterly configuration

View at 1 lam and at the View at solar noon and at the equinox
summer solstice

FIGURE 2 - IMAGES3D Plots of the IC Tracking System

FIGURE 3 - PHOTO OF IC IN THE ORIGINAL CONFIGURATION IN WESTERLY
CONFIGURATIONS
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3.2. MODAL STRAIN ENERGY COMPUTATION

Input Basic Geometry, Material Properties, and Member Properties of the
Structure

I
[ Create the Stiffness MatrixI

I
Calculate the Modal Frequencies and Shapes (number of modes is limited to
90 by the program). Computer disk storage capacity and the time necessary for
computation will be the determining factor.I'
Leavc IMAGES3D. Use an ASCII text editor to split the mode shapes into
files each containing displacements for one mode shape and to permit the
STATIC Module of IMAGES3D to calculate Modal Strain Energies.I

Follow the program setup for the force induced Strain Energy Run

Reenter IMAGES3D for each Modal Strain Energy run desired and have the I
Element Modal Strain Energies written to files for post analysis.

I -
Import the Element Modal Strain Energies into a high capacity spreadsheet.
Apply material loss factors to each element and multiply times the element
strain energy.

COMPUTE THE (r) _ , (1)
SYSTEM LOSS -

FACTOR

TABLE 2 - Modal Strain Energy Analysis Flow Chart

In the following tables, successive derived mode shapes are presented graphically. The center
panel is the undeformed geometry, the left panel subtracts 100 times the modal deflections,
and the right panel adds 100 times the modal deflection. Therefore, a sense of the computer
mode shape animation can be derived from looking left to right. For the ,'s-Built analysis the
material loss factor, Ti, is taken at a very low value of .001 since all materials are metal.



3.3. AS-DESIGNED MODAL ANALYSIS

_______________MODE I

System Loss Factor,~ 'H 0 I~ 1 wW~~* 4)2

System Strain Energy,,j/

System Loss Product, 0 ' i00226 -

Element

lescendili" Sort
No. Strain Lncrgy, 11A of Copoen 0MP Cwnt Kt

IA Fat! ,1G

711 3.77028F 06~ 0.00)1 .77028F-09 I-f11oi
76() 1.643021-(00 0)0 1 16430)
721 1 .48344L-06 001 L 48344L 09 (B i' ii
719 1.4539217-(1y 0.001 1. 4 5 3 'L -v 0 9 -

712 1.2879 1 E-06 0.00)1 1 R27) F' 09;i(D (
710 1.26802E-06 0.001 1.26862.
722 1.267871 -0(6 001 1.267178- F-09 1- 1- c T

718 1. 2 "12 1,ii00 0.001 1.23 1 _ '

776~ 0.42 1091T.I i-7 0.)0 ().4'1091
708 '.022501 -07 0.0 1I ()2 (

768 8.786651>0/~ 0.00 I p '

766 7.706721"-0'7 9.001 -7 (, 7
7 15 -7. 38 1 42T-0 7 0.001 .3 S i4 F K,
779 0,-.5 1)16F Al7 0.00I 1 7y~) le KYct
717 6.185 75 1:-0. 00 ~ -. (

709 3. 0 IU (30 I L )

773 50031~ T ) 01767 4 43, 0- 0.001
775 .216
77-7 .<4 )11I

1I '_ure 4- I nipted \I0(1 $,:



MODE 2

Figure 5 - Undamped Mode Shape 2 of As-Designed IC

MODE 3

Figure 6 - Undamped Mode Shape 3 of As-Designed IC

MODE 4

I-A" 4. 2,Wl ft- 
425 M"

Figure 7 - Undamped Mode Shape 4 of As-Designed IC



MODE 5 _

Figure 8 - U~ndamped Mode Shape 5 (d, 9\-oe>Ignd IC

4.0 STRUCTURAL BRACING AND DAMPING

Figures show stiffeners and dampers for the (6irders and Tripods on the Innovative
Concentrator. Two options were analyzed: st.,1]] nf'rs o/ad ifrzr withi dampers. A choice
was made based on experience with the IC structure to install stiffeners and dampers sized
as shown in the Table.

Stifent3" 0.D. with .086" wall, A =.7854 in I =.8345 in4

Viscoelastic Dampers 0" 0.1). with A =28.3 i, 3.9)8 i.T4 , thickness=.- "ofrl=
1.0 material, Two .375" stce! plates

Table 3 - Stiffener and Damper- Selections

'Toungs, Modu-1lus, linear elastic - I.< k>1

Weight denisity 0 11n

P)l~son's Ratio-___ ______ ____ ___-____

S hear Mod-UI1 us, Ii ucar F C ,tc j

Ceff. ()f Thermal l&\panmm I Not I c

- \~celstc Iarril ~rneo~ r' i II



'A - 7.

I -

/

/ I
/ -

- /

/ '~ > I ~ ~1',

____ \\ K~ Y
_ /

d 7 ~ -/
/ *~ <I

TYPIC~ v2 PPF'
41

Figure 9 - Stiffening & Damping of Literal Modes in the Girders
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Figure 11 - Girder Lateral Stiffener Positions

5.0 DAMPEDAND STIFFENED RESULTS

Thie following mode is a typical indication that the damper location was selected correctly to
develop largest strain energies. With !he high loss factors of a viscoelastic damper, the loss
product sum for the structure is much larger than for the undamped struLctule. Note that the
system loss factor is dramatically increased with the addition of a damipers in relatively few
locations.

c T - 1
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MODES5

System Loss Factor,L il, 0.167391 Modal Frequency 3.683 19
Hz

System Strain EnergyZLU k 1.774E +03

System Loss Product, I] k1L 2.970E + 02

Element Description

Descending Sort'
No. Strain Energy, I k of Compcncnt Componn Portion of

kLoss Factors, Component

Ik LU kV

982 2.20234E +02 1 2.20234E +02 DAMPER Girder 3 Outbrd
Active

988 i.56167E±+02 0.001 1.56167E-01 BRACES Girder 3 Outbrd
766 5.80972E + 01 0.001 5.80972E-02 GIRDER 3 Top
980 5.07246E+01 I 5.07246E +01 DAMPER Girder I Outbrd

Active
773 3.83241E+01 0.001 3.8324 1E-02 GIRDER 3 Bottom
986 3.65928E + 01 0.001 3.65928E-02 BRACES Girder I Outbrd
776 3.48538E±01 0.001 3.48538E-02 GIRDER 3 Mid Vert Tie
907 2.92025E + 01 0.001 2.92025E-02 POD 1
906 2.39679E +01 0.001 2.39679E-02 POD 1
765__1 2.21329E+01_J1_0.001 2.1329E-02 IGIRDER 3 1lop

Figure 12 - MODE SHAPE 5 OF DAMPED AND STIFFE.NED IC



FIGURE 13 - PHOTO OF IC IN THE STIFFENED CONFIGURATION

The modal frequency of a single degree-of-freedom mass-spring-damper system is
= ( k/ in) ?z . Therefore, it is to be expected that the addition of bracing to the Innovative

Concentrator structure will raise the modal frequencies. Since hysteretic damping is modeled
as a very low stiffness element within the finite element model, damping should reduce the
modal frequencies below the stiffened only model. The Figure below is a plot of the modal
frequencies for the three cases analyzed and for the first fifteen modes, and shows that the
expected trends in modal frequency occur as expected. The frequencies follow the same
general tendency until Mode 10 where the Tripod excitation dominates the response. In the
stiffened only and damped and stiffened runs, the Tripod members are braced which raises the
resonant frequency.

Modes I and 2 are essentially the same for all the structural cases explored. Mode 1 has a
41.7 second period which is accompanied by low excitation energy. Mode 2 is readily observed
on both the LEC 460 and the IC and is a gross rotation about the z-axis (optical axis) of the
dish. The z-rotation results in a widely distributed low stress level.

Dampers on the in-plaae Tripod braces did not develop large strain energies for any of the
m,.)des. C,.:._ qucitly, where the mode shapes involved large modal activity of the Girders,
the system loss factor was high. Conversely, if the Trinod modal strain enereie, dom:n-cc
tn.- mod ,1e ,, lui ,,;,ay, then th systeili oss factoi was low. l'he graph in Figure below
shows the systen loss factor for each Mode. Note that Modes 3, 5, 6, 7, 9, and 10 have large
Girder related modal stiain energies and, as a result, have larger system loss factors.
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Figure 15 - System Loss Factors vs. Mode Numbers

Modal strain energy is developed in all portions of the structure. The Lower Mast was modeled
with plate elements while the balance of the structure was modeled with beam elements. The
strain energy associated with the Lower Mast was lower for all modes but Modes I and 2.
Damping would be difficult to apply to the Lower Mast, and its lower ,nodal strain energy
values indicate that damping the Lower Mast would be marginally effective in increasing the
system loss factor and reducing dynamic response. Therefore, damping was not considered
for the Lower Mast in this study. The Figures below show the total modal strain energy by
mode for both beam and plate elements for each analysis.
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Figure 16 - Total Beam Modal Strain Energy by Mode Number
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Figure 18 - Total Plate Modal Strain Energy by Mode Number

6.0 CONCLUSIONS & OBSERVATIONS

" The MSEM is efficient aad zasily implemented for complex structures.

" The MSEM is an effective means to identify wind induced modal deflections that can
effect the optical stability of solar concentrators.

" Bracing to reduce modal deflections was identified by the MSEM was installed on the

structure studied.

" As an added benefit, bracing to reduce modal deflections of long slender elements will

provide lateral stability against elastic buckling.

" Damping has the potential of improving solar concentrator performance, survivability,
durability, reliability, and cost.
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2.0 DERIVATION, OF GOV*ERNI,*1.NG EQUATIONS

The five- Ia yer -u~r '-,am _-ooc',i cieDic:e :.T :,ure 2. -_he 2:nc:)a i

assumptionis usec~~'~'"''~'-'

i. Only 'l-ending and sn'ear 'e;Crm,-at:on-s ar-e consic'erez. _n-oia-ne extensional

strains a-re a-ssumed to be srnail and nezii gible.

2. Bending deformations are governed r,:. ciassicai Euier-Bernouili bemtheorv

[101.

3Shear deformations of the base structure and constraiin layer (Figure 3) are

identical. The Drincival sheazina-ener-gi dissipation mechanism occurs in tnie

viscoelastic damping layers (layers 2 aand 4) since the shear stiffnesses of these

layers are much lower than those ofthcre other layers.

It is imrlicitlv, assumed that the structural a-nc ccnstraining iLayers are mnade of metalljic

materials, whereas the spacing and dlamping layers a-re made of polymeric compounds.

Additional assumptions required to conrioiete :1he development arc Tresented as re-

quired.

The extensional stress (c) in each layer is g2ven by the following equation:

,where Ek a-nd ck are The Youngs modulus of elastic.-tv and strain resDectiveiv.

The general equation for the extensional forces (F) can be written in the Lor:

Fk = "'kEA Ak. k I.()

where Ak. is the cross sectional area in kth 'faver.

For the simplified. one-dimens~ionai anaiysis d'escribed below the sectionai proper-
ties, namely. centrold location. Zd ,and iexura. rigidity l renee.Assoni

Figure 3. Zd is defined to be the distance from -,-e mid-plane of the structurai laver to

the sectional centroid. The strain-disrolacement relations for the iavers are:

61 Z6 (3)

TH
(2 (H21 - ZdWo (4)
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T14  HiE 4  = (H4 1 - Zd)Q'- -H2 H:3 - , - 7- :-6

Es = (H5 - Zd)o' -(H. .H3 - -,,. - H3 - H ,' - -- (7)

where

H21 = i~ (H, 2)

H31 = H 2 + 1(HI H13)

H41 = H2 + H 3 - (H H4)
Hsi = H,_ + H3 _r H4 +1 (HI H S)

The prime represents differentiation with respect to z.
By substituting the strain equations (3) through (7) into (2) we get the force equa-

tions:

F, = XI ZdO' (8)

F2 = 2 (H21 - Zd)' ?- (9)

F3 = ,V3 (31 - Zd)'- " (H2 +- -- ) (10)

F4 = X 4 [(H 41  Zd)4' - (H2 -' H3 + H . (H+ HI -

? +3: -(- + 3 e

F3 = X 5 (HSI Zd)q ' - (H2 - H3 + H,);bi -(H 3 + H4)1 2. - H403'1 (12)

where

Xi = Ek H (3)

Applying the requirement for equilibrium of in-plane forces. i.e.,

r'In -1 n



and strnp-omun g produces thre equatien

.X1 - -) -X:-4-. 5 ZdC'

X1 H 21  X 3H 3 1 -X 4 ,H4 1 5X H 5 1 ,

- ' 2  A( 2 -

H3)- -X4( - ' (H1 -F- 3  XH
-V 3 -Y 4

H4 1- 4 _ "X5 , Js

Equation (15) is rearranged to give:

[X 2H 21 + X 3 H 31 + A 4H 4 1 + XsHsi] =

+ X -I2- X3"X X5 Z

~X -3 X(H 3 - - A4(H 3 -+4H2H3 - + X5 (H2 + H4)

The ecuiiibr um equations for the shear forces (r) in the X-direction are:

3 -G 2  = F5 - 4 F, (171

4 - - 3 '= FS F19

3 4 ,nu



where Gk is the shear modulus and Lk the angie of deformation in the :th laver (see

Figure 3). The quantities 1. F and : are easily obtained by rii-erentiation of

At this point in the derivation it is necessary to assume a sinusoidai mode shape

(which satisfies the boundary conditions for a simply-supported beamI in order to

determine t 1 , t)2 and z consistent with the definition of loss factor presented in [121.

Assuming for simplicity that

w = sinKx (20)

then

o = w' = KcosKZ (21)

1 = w" -K 2 . inKz (22)

and

= w' = -K'cosKz (23)

Substituting equation (21) into (23) provides

011 = _K20 (24)

Assuming that VI, l)2 and "}3 have the same distribution as w, ti, u2 and 0'3 are

related to P by

LI = a (25)

V) = a2b (26)

and

3 -= a3() (27)

where the a's are coefficients of proportionality. Subsequent differentiations of Equa-

tions (25) through (27) give

, (28)

CCB- 12



Retarna °,, equation 12 4 and c n: , .-e!,: -;D S In equat ions 25) "h-rough. (30),

equation (7' c an 'De written as

-v Z4) X4I1,iZd

- 2 L

-- " - - (30) •: %

-:2' - -+ 4 , 41  - Zd) , . -Zd)j 6"

- X5 (H-- H3  - .24 :- , -3) - 3(H2

S .X H - A-V -, (31)

Finai7. equation (21) cau written n the Iform:

7I

--d) - X 4 H 41  3 (H73

K2 X5(H, ± H 3 -H- - K(H 2 -;- 3 -7 4 + X(H
L 2

rH H, H 3 W,
: !x(H: + 4 3 'I x -

H4  H3 1 7 (32)
X5 I f,, -VX4 X3 J

2y 3SImj~a:~v, '2c~uon .iSi ,,ri:ten as

- -~H *Y(H -l3;H C h

X5 - 4  X4

Rear'anging ecuaton !33) gives

L-I- -- =H 3 " - , "'

-- I,'. (34)



Also equation i-9) can be written as

4 : 2 - X(H-, - Zd):o - , .Y (H H 3 - H 4

-X3 (H3 - -f4) - XsH 4lu'j (3si
Reazranging ecuation (35) gives

X5 (H31 - Zd) X5(H 2 + H3 H 4 )j

+ [X 5 (H3, - H,)~ 1 -' j + X5H 4] 3 (36)

Thus equations (17), (18), and (19) are replaced by equations (32), (34), and (36)

respectively.

Since the assumption that plane sections remain plane is being used. the bendin

moment M can be related to deflection by

= M (371

where EI is the flexural rigidity. The total bending moment is expressed by

5 5
,V= Z I,, + T Fk (Hk - Zd) (381

k=l k=1

where Akk is the bending moment of the k th layer given by

MWkk = 6'Eklk3

Equations (37) and (38) define the fiexural rigidity as follows:

Y [E i1 + E212 1 E 3 11, E,4 E5 Is

XI Zd' X X H - Z - X 3 (H 3 1 - Zd) 2 : X 4(H 41 - Zd) 2 - X-(H 3  - Zd) 2

- E2 12  E3 313 -E 4I 14 + H - Zd) + X 3 (H31 - Zd) (H2  H3)

X4 (H41 - Zd)(H?2 + H3 + -~X( 5  d( 2 +13 + H4 )]i

H3H
+ '- - E4 14 )- 3 (H 3 1 - Zd) - X 4(H 41  Zd)(H 3  H + X5(H5 I Zd)-A + H4

H4
- [X 4 (HI1 - Zj d + X;(H51 - Zd)H 4  Et4 14  (401
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N flc ee.

g -acceleration 2K a'ill

:n ;pract,,ce th e ::(.,/=ouuus !s evaluated for a given temperature and an esti-

.natec moda; ifr-eqUETIC?. -e mnoaai frecuency is calculated from fyand compared

to the converge-.,e cie

t 7' 010 (48)

s rn ic nn: o~ zmet. .-,e new estimated frequency is taken as the old calculated

L**2 o ,aer vcim ~a o' the equations derived for the five-layer beam dampin

system-7 1~a -zi -' c-r~pedictions with those for a degenerate case. This

Conmpaxison -,as n*ec settinl the four-layer beam system thicknesses for layers

tnhrete and cr eoua i zer!o s5tan6-off and viscoelastic layers) in the five-Iayerprogram

,inrd tcknssfor :ayer two equal to zero (stand-off layer) in the fou.-laver program-

?reii~r: utn s r rnoac- oss actor, modal frequency ratio. RMS response and

Pea-', cine''r~ >2aZI-n found to be identical (See Figures 4 and 5). This

couparionp rtiaii,', Vi'a!9. t f;ve-iaver equations. but other extensive comparisons

oeonIth cp ;. tisud iovid be made to totallv validate them.

Tivwr~darno-C1 laue mv1itude ratio for a sin -degree-of-fre-dorn system un-

d =go.i;g Siisuo L-a' exc it lon

-7 u~ T (491

W-here rn V . 0 7K~w. ts structUire. The subscript "u" refers to the uin-

darup ~ ~ ~ ~ t Cac :i 2;x J cpt sVthe response with damping treatment.

rfr72CU~- .. lm~tJ :~rf'st~o -se W~, s obtained by using, the equation
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FOUR-LAYER BEAM, MODE i
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Figure - Output Plot for the Four-Layer Beam Computer Program
Where the Stand-Off Layer (H2) is Set at Zero
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kierived in '1131 which is

Not i :at

H mU -n(27-f) 2  (1

The undamped /dam-ped response ratio is given by

~.-m/PI/ V md 1  
7______ 7d tfd>

___rn rn x VX x - (2)
rn1  r

the response w,.ith dIamping treatment.

In summarzy the four main governing equations derived are: modal loss factor

equation %,nich results by solving equation (45) and caiculating the -espcnse ratio

(46), modal frequency equation (4T7), peak amplitude equation (49)., and RMS response

equation 52

4.0 PROGRAM DEVELOPMEINT AND COMPUTATIONS

An V:,eW () thle computer program V5LBD computations scheme Is presented

1 n t1, 110 '.ia-ram shown inFiguie 6. Th- zeo.metr-v of the bpse beam. thickness and

maate.r,: fo~rt~or eaca iaver. and tne viscoenstic da-mping parameters are input

- Z jiloxvumg. I ouantities are caiculated for a specified temperature- frequency

esti a'~ mx: u~e re ucc y temperature shift function. realuced frequency. snlear

moo 2. lo: !ater a! dampinu- of the viscoe 1astc !-,er. Next, modal da-Muing

.r'i:::c C rP rac,-atedi. The calculated mnodal f;-equenic' !5 then compared to the

estu ~ quencvusing tne convergenc criterion. If the convergence criterion is not

satinuo ie calculation is iterated for an Iiprovedl value of the frequency estimi-lt.

Once co'- vpr-gence is achieved. the RMS -n:i -peak response values a-re calculated-

(iarnuii sysem aayzedi ii .his repoir: :nrilues two differen:-.

;ne ia~ri'!n apo:ca:r~n Y'ne ':-o: 'nlv ne visr-cdastima

'ru eyature ango t . r:: Ln tor l d "'t nairrower than n e
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FIVE-LAYER BEAM IMODE
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Figure 8 -Damping Properties of Material
LT1MP Ifor Layers 2 and 4
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FIVE-LAYER BEAM, MODE I
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7ernuerature range over wntich. :antrn dampinq ran ~ acnieveJ is to uise- inuitip-le

:sccoiaszc -:--aieriais with peakn s On. rw-::mo *:curr::.:;M G?:tr -lr ''ur: (sec

Figure 7V As an example. suppose ::.e temnP0rature realA v .7cnc t!n- damnpin4t cc-

sign has to ot)er~Lv :L from 0 no 1500 F T'Anq the ananin proccc'cre in semon: 2.0, two

nateriais are seiccted: LTI.\MP and' 3M46S. The firtz :ateriaj has it peak damipinig

at -~23) F (Figure 8) the second at 330 F (Figurc 0). IDv placing the two mnaterials

:n the order shown in Figure 10 the combined effect -i~z- th esiTced results over a

kroader temperature range than provided by either :naterinfl u e. Fepa-rate~y.

The order in which- the -,-scoeia-s-ic layers a-re ,uis s also rnotn Anavsis

na'i ?oWO thnat the laver nearest the strctue :as to n-ave the high er temp-erature

(aipinq lprooecties to get a wider ranige of dlam~ping perfornianlce. To illustrate this

concept consider two ca-se. 1n the first case., M-C8 wsue ste~c ae n

LT1MP as a fourth layer. In the second case these rnateriaits wer rc relersed. it was

:ounci for a loss factor of 77 1> 0.1, that the firs:.- ca-se gave a wvider temperature coverage

-20 tli-ough 1300 F (see Figure 10), while the second. case resuitec in a more narrow

temperature coverage, -60) through '341 F. (see Figure !I).

5.0 GRAPHICS

(ran~cplDotting ('apaluility %%as built int,,o the roamusing D13000 softwvare.

ne sorv,tre allows users to plot the following four cur..ves on. the samne graph: modal

. ,ii--x (:Tyerature. 1sers also0 have the option NA iuutt ina 7 Y janeureu cange of

enrit)rratui*,!an cm nhoosing whether to plot results oni :e Printm or onN c&pAnv them

.n'-e Scrteen"

A'' canq (1 n::pse p )n tr nrcrain ACLE C)": it *oc 1, , Wr ow to

, nerm, arpr: pints for the Ove->rer darnpm.T ysnn wr vas 2pso &'. ?(p-~ '7. ThO

wIy rt 4 00' pworri.i rw~Si a: I'eipn o'ne plt- r:Lciur l1,a

:icl'r ~ ~ ~ ~ ~ ~ 12 \a'.vsetri'~~r ue - n coca~ !or -,f the prograrn gen-

erates rt phlos of innxinolii- RNIS respn: I ratios ve rsus tcr nerature, for U iffer'nt

()~l! 4(1' n-,r f i~'IV' ~t;~2 i : 1~r 1,n Fier Fi
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Figure 11 - Combined Effect of the Two Materials, LTIMP
(for Layer 2) and 3M-468 (for Layer 4)
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CARPET PLOT KJR F!VE -LAYER BEAM. MODE
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Figure 13- Carpet Plot for Maximum RMS Ratio
vs. Temperature (Degrees Fahrenheit)
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7ange.

Th:e carpet piott.ii, )rzr , '001vf~o :0 ho wid ul daniJl:

characuerwi:cs as a :uimcton of >:inpuratw fn ~ paaqw ~rc wiv- L. th gonvot:':

Sppii,(i ;avorr, It dal~lrsrt~ I)-,, tm i pnrnuwltr Sttl(1F' An th Ki ~Ve-Ia"7

syvstem by varying the thickness of each Oayer (except : Late Inarxo !v 2U that ZtKr

-;tanid-off layer had the most significa-t (iaflpinq effect or, response. iervasin-, PZMI

response by- 19.1$' comrpared to 0.89 "T for the adhe~,ve-layer. _Additiohiai verifica t 101,

,) X)L.B D riel ,) he done, zis vl a-Ir ars t:epormopu ih;ct

test oiaci. The five-iayer systemn presented can ue at very effective tec.~Ique in helpiml,

ig 1e1ner to _eiec proper damping treatmeats lor relucig reInn virains.



TABLE I - Para-me:ric

d2 H3 H4 5 5 XRMSu/XRMSd TLmP
(in.) (in.) (in.) (in.) (psi) (MAX) (CF.) CHANGE

0.005 0.10 0.005 0.010 fOE6 24.66 5 BASE
0.006 0.10 0.005 0.010 fOE6 24.88 5 0.89
0.005 0.12 0.005 0.010 IOE6 29.39 5 19.18
0.005 0.10 0.006 0,010 1OE6 24.98 0 1.30
0.005 0.10 0.005 0.012 IOE6 27.52 0 11.60
0.005 0.10 0.005 0.010 12E 27.06 0 9.73
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ABSTRACT

The dynamics of a class of struts with one viscous chamber at one end of the

strut is developed using formulation and methods consistent with finite element

dynamic analysis of structural system. This technique is developed to enable

consistent and systematic design and analysis of large truss structures passively

damped by viscous struts. Modeling and model reduction methods for accurate

anI.vsis with a minimum number ot design parameters are developcd. Design

parameters for optimum damping characteristic, and the associated dynamic

stiffness and bandwidth characteristics are derived. A design procedure and design

curves to size the struts for system level integration are presented.
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INTRODUCTION

Large flexible structures are characterized by many flexible modes within the disturbance and
control bandwidth. For most precision structures, the performance requirements are very
stringent. However, this class of structures often has very low intrinsic damping, less than 0. 1%
equivalent viscous damping ratio l , which results in significant dynamic responses. For truss type
structures, a strut with good stiffness and damping characteristics will significantly ci iance the
structural performance.

Struts with viscoelastic materials have been designed, tested and implemented in demonstration
test articles and structures2 . Modal Strain Energy method is often used in the design and analysis
of this type of struts and structures 3. The mathematical problem of struts and structures are posed
in a frequency dependent form. Results from this approximate solution technique matched quite
weil with test dat, 2.

Viscous energy dissipation is a well understood damping mechanism. Incorporating a
danping chamber in a strut can provide the necessary damping characteristics. An effective design
of this type of viscously damped struts has been implemented by Honeywell 4 . In order to
successfully integrate the viscous struts into a system level design, the dynamics of the struts must
le totally understood. The same analysis method should be used to study the strut dynamics and
system level dynamics so that the integrated design and analysis can be performed consistently and
systematically 5. Also, in order to understand the behavior of the struts as contributing members of
a large structure, the problem must be simplified to a few key design parameters by applying
engineering assumptions. Simplified design procedure with design curves are presented to
compute the kdy strut design parameters. lowever, the details of the mechanical design is not the
subject of this paper.

VISCOUS STRUT CONFIGURATION

The viscous strut is a mechanical device comprised of three basic elements: an outer tube, an
inner tube and a small viscous damper. A typical strut configuration is shown in Figure 14. The
damper is placed in series with the inner tube. The outer tube is placed in parallel with the
damper/inner tube. An axial displacement across the strut produces a displacement across the
damper. The damper forces fluid through a small diameter orifice, thereby causing a shear flow in
the fluid. For Newtonian viscous fluids, the fluid shear is actually proportional to the displacement
rate across the damper and thus, a velocity dependent viscous damping force is obtained. Under
quasi-static load, the fluid flows and provides no resistance and the outer tube provides the static
stiffness to the strut. The stiffness of the inner tube is important to impart sufficient
displacement/velocity to the damper. The damping coefficient of the damper is a function of the
fluid material properties and the geometry of the viscous chamber. Since the strut has other small
2omponents, they will introduce additional flexibility to the strut and degrade the performance. It
is important to account for these flexible elements accurately.

I rFT"D Lm I \t/t /f IIit

Figtire I ('onfturaimnon Of VISLcOulv Damped Strut l
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The formulation presented here is applicable to a general class of viscously damped struts
which are axially symmetric with the viscous chambers rigidly attached to one end of the struts.
This considerably simplifies the mathematics and lead to a design model with a minimum number
of key parameters.

STRUT ANALYTICAL MODEL

A viscous strut is a structural component which can be analyzed by standard structural analysis
methods. As such, it can be analyzed using conventional structural analysis iechniques and tools.
For a complex strut design, a finite elemeat model can be developed easily using a combination of
beam, plate, solid and viscous elements. The analysis is Lcitc straight forward except for the
viscous element which is not often used in conventional structural analysis. In general, the
governing differential equation for a strut can be expressed as:

Mil + Cu+ Ku = p g(t) (1)

The damping matrix has contributions from two sources: the intrinsic material and joint damping,
and damping from the viscous dashpot. The intrinsic damping is insignificant compared with the
contribution from the viscous dashpot and hence ignored. Equation (1) is normally cast in the first
order form for solution:

[ C Ml u] + 0 1 01 [ [u] g(I) (2)
,-%1 0 111 [ 1) L U 0 I

The strut can be modeled by many structural nodes to provide a general description of its
dynamic behavior in 3 dimensional space. Let one end of the strut be fixed, the displacement
vector of the end node be u 1, and the displacement vector at the viscous chamber be u 2. Many
other interior structural nodes may be needed to model the stiffness distribution in the finite element
model (see Figure 2).

U-L1
= [~](3)

I END VISCOuS
FIXED CHAMBER INNFR TUBE OUTER TUBE

NODE 2 INTERIOR NODES E:7

Figure 2 An Idc .!!zcd Viscous Strut

Th lu'. cd mass matrix, damping inatrix, and sil fnc.; matrix can be expressed in the following

torri-:



L 0 i iI 0 0I ,I n' K

Since there is no applied force at the interior nodes, the force vector is given by:

p= (5)

This finite element model is capable of predicting all the details of the global and local strut
behavior. However, the strut is normally designed to act only as an axial load carrying member
providing strength, stiffness and dainpiag to mcd thc (esign rctuirecnlts. The amlvsis mI(lcl in
this form also does not explicitly express the relationship between the essential dynamic
characteristics and the key parameters. It should only be used if the detailed local dynamics is
important or as a verification model after the strut parameters are selected by other means.

STRUT MODEL REDUCTION

In order to understand the dynamic characteristics of the strut, the analytical model should be
simplified to a small set of parameters. The reduction of the component level model will also
significantly reduce the complexity of the system level model. For design purpose, only axial
behavior of the struts are considered. Consequently, the analysis model is constrained to have
displacement only in the axial direction. At each node, only the axial degree of freedom and two
rotations are retained. For structural problem, the internal dynamics is generally not important and
the internal inertial effect is ignored.

There are only two degrees of freedom necessary to characterize the strut: u1 - the axial degree
of freedom at the strut end for connectivity and u- - the axial degree of freedom at the dashpot for
damping. The standard static condensation reduces the stiffness matrix to a symmetric 2x2 matrix
with only 3 independent terms:

k k k,12 (6)
k k2l k 22

Therefore, any complex viscous strut design can be reduced to only 3 equivalent stiffness
constants. For the same 3 stiffness constants, there can be many designs having the same
condensed characteristics. Since for the class of struts of interest, the dashpot is at the supported
end, the condensed damping matrix is very simple:

= [g" C I)
As for the mass mnatrix, normally a simple lumping procedure is sufficient since the inertia

effect of the strut is considered not important.
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STRUT DESIGN MODEL

Static condensation of a relatively complex strut design allows a simple equivalent mechanical
modeling of the strut for understanding its dynamics. Due .o the design details, many stru:
configurations also have an additional characteristic 4 that k 12 -k2 2 . This allows a further
simplification such that the abstract 2x2 stiffness matrix of Equation (6) can be represented by an
equivalent lumped parameter model as shown in Figure 2. A viscously damped strut can now be
representie by 3 frequency independent parameters, k, - the outer spring, k2 - the inner spring and
c - the dashpot.

k ,(t)

c k2

Figure 2 3-Parameter 2 DOFs 'Viscous Strut Model

The equation of motion of the 3-parameter viscous strut model can be written as:

mu + cu + ku = p g(t) (8)

where.

m = 0 0], k = k+k -k2 c [ 0 p = [P] (9)

If the strut is used to support a rigid mass which is include in the mass matrix, the characteristics of
this structural system is given by the free vibration problem:

mu + cu + ku = 0 (10)

;I) '.;w III, m d~cr I

C i M [] 4,[k-,l [u]
m + - 1 = 1() 11

For this three paranetcr mnodel, ELuation (1 11) can written explicitl' as:

rn-(Quc -inoL) 0k k, A 0 L

(I~( 2a) i

L 0 o () j uJ A , ()i ) (} 0j

0 mi k) nl +k k,

i i ! Ii I) im !



The eigenvalues, X , and eigenvectors. yl, are generally complex. For a lightly damped
system, there is one pair of complex eigenvalues which represent the under-damped modes and
one real eigenvalue which represents the over-damped mode. Eigensolvers used in structural
codes normally assume the structures to be lightly damped and solve for complex pairs only.
However, solving the eigenvalue problem does not give any physical insight into the design of
struts. Therefore, a simpler design approach is more appropriate.

APPROXIMATE ANALYSIS OF DAMPED STRUTS

When a strut is functioning as a member of a large structure or as an individual member under a
harmonic force given by:

g(t) = eia (13)

the steady state solution takes the form:

U LI eiWt (14)

Assuming tthat he mass at the internal degree of freedom, u2, is small, and the internal dynamics of
the strut is not important to the problem, the governing differential equation is given by:

[klk2 Ak2] ° 2 [M 0]+ 1 i  [0 0] }[uI] = [p] (15)

The equations of motion are described by frequency independent coefficient matrices. The internal
degree of freedom, u2, is not subject to any external force. Again, the static condensation
technique is used to reduce the internal degree of freedom by considering the second equation of
Equation (15):

-k 2 u, + (k 2+ioc) u2 = 0 (16a)

u2 -=-k-1 -u 1  (16b)
k2 +ioc

Therefore, the effective strut dynamics is given by:

0)2m + (kl+k 2) - ikc1) = p (1 7a)

The term in parenthesis is the strut dynamic impedance which is frequency dependent. However it
is more useful to describe the strut in terms of complex stiffness (i.e., k(w) = k R() + ik'(w) ):

(-o)2m + kR + ik') UI  p (17b)
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where,

k R = klk2 2+ (kI+k 1 )(co) 2

k22 + (co) 2

kk 2 (cco) (lb)
k 2

2 + (c,))2

The complex stiffness can further be expressed in a different form in terms of the real part of the
stiffness and the loss factor as:

k = kR (1+ iTl) (19a)

where,

k-,2 (cO))
11 -- (19b)

k,-' + (k1 +k2)(cW)2

These relationships can be presented in a more useful form for design purposes in terms of
normalized parameters. Define the stiffness ratio as:

k2 (20a)-kI

the strut frequency constant as:

k, (20b)

and the normalized excitation frequency as:

)3 -
(20c)

(wc

Rewrite the ,[iut real stilfness and loss factor in tcnn, of the normalized ratios:

kR [)K2+ (I +K)021 (21a)

k, L 032 4-K j

TI -2 (21b),,'*(I+)f)32

In this normalized form, useful design curves can be generated to aid damping design. The
damping and frequency relationships of a few selected stiffness ratios are shown in Figure 4. The
loss factor has a slope of one and negative one ,it the low and high frequency range on the log-log
scale and has a distinct maximum at the mid fn quency range. The damping loss factor increases
with the stiffness ratio.

( "'7
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For design purposes, it is important to understand the frequency and damping characterisucs ()I
the damped strut in terms of an equivalent single degree of freedom (SDOF) system. ThiS
approximation bypasses the eigenvalue problem of Equation (12). An equivalent SDOF system is
shown in Figure 5. The equation of motion of this system subject to steady state force is given by:

(-2m + k + iwc) u = p (22)

u(t)k

C

Figure 5 Equivalent Single Degree of Freedom System

Comparing Equation (22) to Equation (17), for lightly damped systems, ,,ay -_ • 2, thc
equivalent natural frequency of the damped strut system can be approximated by:

(1)q =)(2 3)

The equivalent viscous damping ratio can be found by equating the energy loss of the strut to that
of an equivalent SDOF viscous system. The energy dissipated per cycle of the strut as described
by Equation (19) under a harmonic force is given by7:

Dn = itTI kR u1
2  241

The damping of an equivalent SDOF viscous system is given by:

= ITq(2mre q) W"L 25
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E-quating the energy dissipation at resonance, co = weq:

OPTIMUM STRUT BEHAVIOR

For a given a design, i.e. k1, k2 and c, the strut dynamic stiffness and damping can be
computed using Equations (21a) and (21 b). A typical plot of the stiffness and loss factor of a strut
is shown in Figure 6.

2.0 0,4

/Loss -0.3

S 1 .. . "-...... ... .- ----

-0.2

104

. , Sltiffnes!

1I0 "--4 - - - I . . . . 0.0

so 50 1 150 200

Frequency (Hz)

Figure 6 Typical Viscous Strut Stiffness and Loss Factor vs. Frequency

For design purposes, it is important to find the optimum performance region of the strut so that
the strut can be designed to perform effectively, i.e. high damping at the desired frequency range.
The maximum loss factor with respect to frequency can be found by setting the derivation of
Equation (19b) to be zero:

() (27)
)OW

The Cimdition at which the dainping is at maximum is denoted by the subscript op.

K

Top 24+K(28a)

2(±+K)

kRop- 21+K) k (28b)

K
COop (Oc (28c)

K

r3oP = __I/-I1. T2 oP (28d)
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It is impo ant to note that the maximum loss factor is governed by K, the ratio of the inner and
outer suffnesses. A flexible inner tube is not effective in providing force to the damper it) activaI'
energy dissipation. A stiff inner tube is very desirable for high damping but the strut will also be
heavier. It is also important to note that there is not much damping at low and high frequency.
The stiffness corresponding to maximum loss factor is at the transition between the static stiffness,
k1, and asymptotic stiffness, kl+k 1 . The frequency at which the maximum loss occurs is
proportional to the damper non-dimensional frequency, wc,. As a matter of fact, the normalized
optimum frequency is twice the maximum loss factor. Using these relationships, frequency
independent parameters can be computed easily to match the key points of test data in order to
characterize the dynamic behavior. Comparisons between analytical and test data were excellent.

These relationships can easily be used to size the key strut parameters. For a desired level of
damping, fr, use Equation (28a) to find the required stiffness ratio, KT.

KT = 2fTr 2 +2TIr\1l, 2 + 1 (29)

Then use Equation (28c) to compute the damping coefficient. c,, required to locate the frequency,

COr , where the maximum damping is required.

KT k,
c- r = (30)

1+Kr Wr

STRUT BANDWIDTH

Another important performance parameter is the bandwidth of the strut over which there is
significant amount of damping. The effective bandwidth can influence the design of struts for a
large structure with a wide range of natural frequencies.

The bandwidth of the strut can be defined as the frequency range over which the strut has a

damping efficiency y

I - 1 (31)rlop

The bandwidth can be found by solving Equation (21b). For a given damping efficiency, there are
two frequency points:

K 1± 1-(32)
Y Vl±

The correspondinii normalized freiuencV handwidth is given by:

2KN 1 - '/
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The actual frequency bandwidth is given by:

2&o -2,1 - y(2 k1  34

Aw K _1772 k,(34)
y\ 1+K

The damping bandwidth is shown graphically in Figure 7. ,he damping within the bandwidth i,
guaranteed to be higher then the specified efficier"'y. The bandwidth concept can be used for many
other design reasons. The recipt icol of damping efficiency can be interpreted as a safety factor for
damping design. The bandwidth can be used to cover the wnccrtainty in the natural frequencies of
a large structure.

'I lo /iI 1f17 i '" -P1[

11)

Figure 7 Strut Damping Bai,dwidth

DESIGN EXAMPLE

The method dcveloped can be used to size the key parameters of a srut. Only simple algebraic
equations solved and an eigenvalue problem is totally avoided. Suppose a 20-pound weight is
supported bv a strut. The system is required to have 20 Hertz natural frequency and 5% viscous
damping. B3y using the design equations, the suut parameters were computed to be: k, = 758.8
lb/in, k, = 166.86 lb/in, c = 1.2 lb-sec/in. The frequency and damping characteristic of the system
with these parameters were checked with an exact eigeiisolution. The results compare favorably
and are summarized in Table 1.

Table 1 (oinpansorn ,, RcT hils

Parameters DIesiun ( u!_.. ,nsolution Error

Frequency 20.0 1 lz 20.2 Hz

)amnpine 5 q 5 < 5--



CO N CL .I I S 1 N

The dynamics of a class f viscously damped struts is presented. The derivation is based on
the principles of structural dynamics and governing equations of motion of a finite element model.
This approach is consistent with the system level analysis methods. The use of condensation
technique allows a complex strut design to be reduced to 3 stiffness parameterF which are further
reduced to 2 lumped stiffness parameters. Tlz dynamics of the struts can be understood through
non-dimensional design variables. Design curves can be used to facilitate component sizing. The
bandwidth characteristics of the struts provide further insight into the performance of this class of
struts. Results from using this method compared favorably with the exact solution from a complex
eigenvalue problem. Therefore. a 3-parameter model can be used to characterize the performance
of a viscously damped strut for system level design and analysis. The method can be used to
derive component specification to meet system level design requirements 5.



NOMENCLATURE

Symbols

C,c,c = viscous damping matrix or scalar

D = energy dissipation per cycle

,0 = forcing function

i = imaginary unit, -1
K,kk = stiffness stiffness or scalar

Mmm = mass matrix or scalar

p = spatial force vector

u, u = displacement vector and axial displacement degree of freedom
i3 = non-dimensional forcing frequency

Y = damping efficiency factor

A = change/bandwidth
= complex eigenvalue

Y = complex eigenvectors

P = loss factor
K = stiffness ratio of inner spring to outer spring

= damping ratio

W = frequency, radian/second

Subscripts

eq = equivalent
c = pertaining to damping

i = for the i-th mode
op = condition at maximum loss factor
r pertaining to the required conditions

pertaining to viscous damping
T = Fertaining to viscoelastic (hysteretic) damping

Super,"ripts

I Imaginary

R Real
T = matrix transpose
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A Study of a Vibration Absorber to Control the
Vibration of Rectangular Plate
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ABSTRACT

A vibration absorber was studied to control the dynamic

behavior of a rectangular plate. The absorber consists of a
vibration damping composite steel beam and an additive mass.
By evaluating the loss factor and the bending rigidity of
the composite steel beam using the Ross-Kerwin-Ungar model,
the length and the thickness of the composite steel beani and
the additive mass were determined in order to tune the
resonance frequency of the absorber to any resonance
frequency of the rectangular plate. The dynamic behavior of
the rectangular plate with the absorber was measured and
compared with the calculation. The close agreement achieved
suggests that the present method is sufficiently reliable to
predict the dynamic behavior of the vibration absorber
consisting of the vibration damping composite steel beam.

1-5-5 Takatsukadai Nishi-ku Kobe 651-22, Japan
Phone 078-991-5640 Fax 078-991-5605
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INTRODUCTION

A vibration absorber is an effective method to solve
vibration and noise problems in several industrial
structures and machines. The absorber is a passive damping
device to reduce the amplitude of vibration at resonance.
The optimum design metyyy for the single of degree system
was already derived . Though mai)vgyestigations of
vibration absorbers have been reported ), there is few

reports to study the absorbers using a vibration damping

composite steel beam as a spring and damping element.

In this paper, we propose a method to design the

absorber consisting of the composite steel beam and an
additive mass. By evaluating the loss factor and the bending
rigid y,( 7 Qf the beam using the Ross-Kerwin-Ungar
model the thicknesses of the steel and viscoelastic
resin layers and the length of the beam are determined to
tune a resonance frequency and of a vibrating main body to
be damped.

The vibration absorber was designed to control the
first vibration mode of the rectangular aluminum plate using
the above method. The frequency response curve of inertance
of the plate with the absorber is calculated to be compared
with the experimental results. The close agreement achieved

suggests that this method is sufficiently reliable to
predict the dynamic behavior of the absorber consisting of
the composite steel beam.

1. CALCULATION METHOD OF DYNAMIC BEHAVIOR OF THE ABSORBER

1.1 CALCULATION MODEL
The vibration absorber is shown in Fig. 1. It consists

of the vibration damping composite steel beam and the
additive mass placed on the both ends. The beam is
supported at the center and attached to the vibrating main
body ( a rectangular aluminum plate in this paper ) to be
controlled. As the shape of the absorber is symmetric, the
calculation model is assumed to be the cantilever with an
additive mass at the free end as depicted in Fig. 2.

1.2 CALCULATION OF THE DYNAMIC BEHAVIOR OF THE ABSORBER
The vibration damping composite steel beam is

considered to be equivalent to the homogeneous beam with
the structural damping. To incorporate the damping into the
beam, it is necessary to replace a bending rigidity EI of
the beam by a complex bending rigidity EI(l+j?). The complex
bending rigidity EI(l+j7) can be calculated by using the
Ross-Knyin-Ungar model( referred to hereafter the RKU
model) . Bending wave equation for the vibration absorber
is given by

CCD-2



p A-t 2 + EI(I+i) 9 x4 - 0i()

where w,p,A,and I are the displacement in Y-axis, the mass
per unit length , the cross-sectional area , and the area
moment of inertia of the composite steel beam, respectively.
7 is the loss factor. The general solution to Eq.(l) is
given by

w=Wexp(j w t) (2)

W=Aiexp(-jkbx)+A2 exp(jkbx) +A3 exp(-kbX)+A~exp(kbx) (3)

where W is the amplitude of displacement in Y-axis, Al-A4
are undetermined constants, and kb is a complex wave
number defined by

P A02 (/j (4)
kb I EI(I+ 772 /'

a=cos( I  tar-'7) (5)
4

L=sin( I - tan-' 7) (6)
4

The boundary conditions at the clamped end(X=O) and the
free end(X=L) are given by

Clamped end(X=O) W = 0(7)

dW 0 (8)
dx

Pree end(X=L) F- 2 W 
d 3 W  (9)

EI(1+j 77) EI(l+j77) = dX3

d2W (10)

dx' =0
where m is the additive mass and Wv is the circular
frequency. Substituting Eqs.(3)-(6) into Eqs.(7)-(10), we
obtain

A,= j(coskL-sinkL+coshkbL-sinhkbL)F/i 
(11)

A,= j(coskbL+sinkbL+coshkL+ nhkbL)F/D (12)

A3 = [-sinkbL-sinhkoL-j(coskbL+coshkbL)] F/D (13)

A,= [ sink L+sinhkbL-j(coskbL+coshkbL)] F/D (14)



where

F= Fokb/p A( 2  (15)

D= 4 [1+coskbLcoshkbL+ H(coskbLsinhkbL-sinkbLc0shkbL)] (16)

H= mkbL/p A (17)

Substituting Eqs.(11)-(17) into Eq.(2),(3), we can
calculate the amplitude of the displacement. The frequency
response curve of inertance of the absorber is found by
defferentiating the displacement W exp(jwut) twice with
respect to time t and divided by the sinusoida± force FO
exp(jwt) which acts on the free end.

1.3 RKU MODEL OF THE VIBRATION DAMPING COMPOSITE STEEL BEAM
The vibrating Jamping composite steel beam has three

layers as shown in Fig. 3. The complex bending rigidity
EI(l+jq ) of the beam can be calculated by substituting
Young's moduli E1 , E3 and the thicknesses t1 , t3 of the
steel, the complex shear modulus GI+jG 2 and tfe thickness t2
of the viscoelastic layer into Eqs.(18)-(20).

The value of GI+jG 2 used in this calculation is the
reduced data of the modulus over the frequency range 10.0Hz
to 2.0kHz at +24"C obtained from the measured data over the
frequency range 0.03 to 80.0 Hz and the temperature range
-30 to +50"C by (Vjing the temperature-frequency
superposition principle

Eibt 3  E3bt3  tl+t3(
El(l+ji)= + - +DEbt, - +t 2 ) (18)

12 12 2

gE 3 t3 (tl+t 3D = _ ( - t 2(19)

Et,+g(Et,+E3 t3) 2

G1+jG2 EI(1+j77) 1/2 (20)

( E3 t t pP A
2. OPTIMUM DESIGN OF THE ABSORBER

2.1 DETERMINATION OF THE OPTIMUM DIMENSIONS OF THE BEAM
The vibration absorber is applied to control the first

mode of the rectangular aluminum plate(1000xl000x4mm) in
this section. After measuring the resonance frequency f0 and
the equivalent mass M for the plate, The optimum values of
the resonance frequency f0 and loss factor(Y9Pt of the
absorber can be calculated u ing Eqs.(21)-(23)

u 2m/M (21)
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I
foPt- fo (22)i+g

7 opt= [3#/2(1+g)] 1/2 (23)

The values of f0 and M cM be evaluated by applying the
half-power bandwidth method to the frequency response
curve of inertance, measured at the center of the plate
where the maximum amplitude of the first vibration mode
occurs. The frequency response curie measured is shown in
Fig. 4. We obtain f0=24.5Hz, M=2.88 kg, and ? =0.0171.
Assuming the additive mass m=ll0g (/u =3.82%), we obtain
fopt=23.7Hz, 'opt=0.235.

To achieve these values, the frequency response curve
of inertance for several dimensions of the absorber were
calculated. The resonance frequency f and the loss factor
I of the absorber were estimated by applying the half-power
bandwidth method to the frequency response curve of
inertance calculated by using Eqs.(3)-(20). The calculation
of the frequency response curves of inertance was carried
out for the cases of t2=30,50,70,100 pm and L=90,100,110,120
mm under the condition that the both of t and t3 are fixed
at 1.6mm. The calculated results for t2=76,m, L=100,110,120
mm are shown in Fig. 5. The optimum values of t2 and L are
determined by choosing their optimum combination so that the
calculated results of f and I equal fopt and 1?ot'
respectively. The relation between f and 7 of the absorber
for each values of t and L is shown in Fig. 6. This shows
that f=24.9Hz , =O -. 245 can be achieved by setting t2 =70/Am,
L=110mm.

2.2 CALCULATION OF THE REDUCTION OF VIBRATION AMPLITUDE
The frequency response curve of inertance of the

rectangular aluminum plate with the absorber can be
calculated from the values of the equivalent mass M , the
sprj.i constant K , and the loss factor 77 of the first
vibration mode of the plate and that of the absorber as
shown in Table 1.

The calculated results of the frequency response curve
are shown in Fig. 7. The solid line ren-esents a calculated
rec>It without the absorber. The dashcd line represents a
calculated one with the absorber setting t2 =70um. The broken
li-e represents a calculated one with the ansorber setting
t2= 30m. The former is tuned to the o! timum value, and it
reduces the vibration amplitude zy about 20 dB. On the other
hand, the loss factor of the latter is about half of the
optimum value, and it causes 3 dB inferiority in the
reluction in the vibration amnivul e of the absorber.



3. COMPARISON OF CALCULATIONS WITH EXPERIMENT

3.1 THE INERTANCE TRANSFER FUNCTION
The measuring system of the dynamic behavior of the

absorber is shown in Fig. 8 ( the temperature of the
thermostatic oven is set at +24'C). An absorber is made to
realize the optimum dimension and the frequency response
curve of inertance of the absorber is measured. The result
is shown in Fig. 9. The values of the equivalent mass m, the
spring constant k, and the loss factor of the absorber
can be obtained from the measured frequency response curve,
and compared with the calculated result as shown in Table 2.
These results show the close agreement, and it can be
concluded that the present method is sufficiently accurate
to predict the dynamic behavior of the absorber.

3.2 THE EFFECT OF THE VIBRATION ABSORBER
Figure 10 shows the frequency response curve of

inertance at a center of the aluminum plate with the
absorber. The solid line represents the calculated result
and the broken line represents the measured result. The
close agreement of the measured and calculated results
suggests that the present method is sufficiently reliable to
predict the reduction in the vibration amplitude at
resonance.

CONCLUSION
In this paper, the effective method to design the

vibration absorber using the vibration damping composite
steel beam was proposed to tune the resonance frequency and
the loss factor of the absorber to the optimum value. The
following results were obtained;

(1) We proposed a method to design the vibration absorber
consistina of -7-'site steel. -em and the additive
mass. The optimum values of the thicknesses of the steel
and viscoelastic layers and the length of the beam can be
determined by using this method.

(2) The dynamic behavior of the rectangular aluminum plate
with the absorber can be predicted with a practical accuracy
by using this method.

(3) The remarkable reduction of 25dB in the amplitude of
vibration can be achieved by applying the absorber to the
rectangular aluminum plate.
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Table. 1 Md.K. 7 of Aluminum Plate & Vibration Absorber

M kg K N/rn )

1st Mode of P ate 2.88 6. 90x104  0. 0171

Absorber t2,7Og a . 109 2. 56x10' 0. 2450

t2=30g a . 108 2. 54x103  0. 1204

Table.2 Comparison of Calculated & Measured

Values of u, k, 7 of Absorber

m kg k N/u 1

Calculated 1.09x10'l 2.56x10' 0.2450

Measured 1. 12x10'- 2. 74x105  0.2521
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IMPEDANCE MATCHED MASS-DAMPERS:A NEW
APPROACH FOR IMPROVING STRUCTURAL

DAMPING

Craig Gardner, General Electric-Power Generation'
Richard H. Lyon, MIT

ABSTRACT

Statistical Energy Analysis (SEA) techniques are used to analytically determine the damping
effect achieved by attaching a quantity of mass-dampers to a damped flat plate. Mass-dampers
are defined as SDOF oscillators which are over damped and have a resonant frequency below
the frequency range of interest. The analysis has shown that the damping effect achieved by this
approach is maximized when damper impedance is matched to a particular ratio of the average
drive point impedance of thz plate. The analysis indicates that the damping effect achieved is
significant for mass-damper mass to plate mass ratios as low as 0.05 to 0.2.

A prototype mass-damper system was designed and tested to verify the analytical results. The
experimental results showed that significant improvements in damping were achieved and that
the amplitude of modal frequencies were reduced by as much as 10-15 dB over a wide frequency
range.

This approu,,:h differs from visco-elastic techniques in that it does not share strain energy with
base structure. This characteristic may make this approach effective for damping stiff structures
at low frequencies.

1100 Western A-,-., Lynn MA 01910, MS:GPNR7, Tel.(617) 594-6241
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1.0 INTRODUCTION

The low frequency damping characteristics of many structures are critical to their performance.
Among such structures are submarines, which must have low structureborne noise levels to
remain undetected and tall buildings which need to minimize wind induced and seismic
vibrations for comfort and safety considerations. Other applications may include reducing low
frequency vibrations in aircraft and automobiles to improve passenger comfort.

Designing and implementing structural damping systems which perform well on stiff structures
at low frequencies is a challenging task. Visco-elastic materials are often used in the design of
such damping systems. In order for such designs to be effective, they must share a significant
portion of the dynamic strain energy. This requirement can at times be difficult to obtain in
practice.

Because of this difficulty, a damping system which did not rely on sharing strain energy with
the base structure might have an advantage. Such a system would ideally function over a broad
frequency range and not be tuned to a particular resonance of the base structure as is the case
with tuned absorbers.

Our approach began by analyzing the effect of adding a quantity of masses and a dashpots
combined in series on plate dynamics. Figure 1 shows a plate with 6 Mass-Dampers. It was felt
that impedance matching of the Mass-Dampers to the plate could result in dissipating a
significant amount of power and therefore increase the damping of the plate.

<~ I t2>

Figure 1 Plate with 6 Mass-Dampers.

Statistical Energy Analysis (SEA) techniques were used to analyze the effectiveness of these
Impedance Matched Mass-Dampers. A prototype system of Mass-Dampers was designed based
on squeeze film damping principles. The effectiveness of these dampers was experimentally
verified and compared with analytical predictions.
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2.0 SEA ANALYSIS OF A PLATE WITH MASS-DAMPERS

Figure 2 Rectangular plate with mean-square input force < 112 >, average m.s. velocity < v, 2 >,
drive point conductance G,, loss factor 71., and mass M.

Lyon' has shown that for the plate shown on Fig. 2 the power input to the plate and dissipated
by the plate are equal and therefore the average mean-square transfer function TF is given by
eq. (1).

<1 2> G- 11M

where:

<I>= average mean square plate velocity

> = average mean square input force

G= average plate drive point conductance = Real part of plate mobility
w 11, M, i. - effective plate resistance

TlM, Mf plate loss factor and mass respectively

Note that the basic form for the plate TF is a ratio of the plate conductance to the plate
resistance, Rp.

We expand on this concept to derive an expression for the plate TF with mass-dampers. Fig. 3
shows the system which we will analyze, a plate with two Mass-Dampers. The mass-dampers
shown on Fig. 3 are basically SDOF systems that have the same components as a tuned damped
absorber.

Our aFr-oach to using these elements will be different from the tuned damped absorber approach
in two ",mportant aspects. First, these mass-dampers are designed to improve structural damping
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at frequencies well above their undamped natural frequency by using an impedance matching
approach. Tuned absorbers are frequency tuned to add damping for a particular structural mode.

Second, these mass-dampers are very much overdamped (typical r= 1.2) whereas tuned damped
absorbers are typically underdamped. Because they are very much overdamped they could be
accurately modeled as a simple mass and damper combination. The primary purpose of the
spring is to support the static weight of the mass-damper mass.

We derive an equation for the mean square transfer function (TF) < v 2 >I < l,2> for this system
where the number of Mass-Dampers, N is 2 but in general N can have any value. From the
expression for the TF we will be able to derive an equation for the effective resistance, R
resulting from the mass-dampers.

Figure 3 Plate with 2 Mass-Dampers.

We make the following assumptions in performing the analysis:

1. Points on the plate move independently, i.e. the attachment points are separated by a
distance greater than half a bending wavelength.

2. The dynamic properties of the plate can be described by average parameters and mean
square response.

I The addition of passive discrete elenicnts does not significantly affect the average drive
point conductance of the plate, Gp.
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We analyze this system by exercising two reciprocal analytical "experiments". In "experiment
1" as shown in Fig. 4 a mean-square force < l2> is applied to the plate and the points on the
plate that attach to the two dampers are "blocked". Forces <1 b132> and <41,,2> are applied
such that the mean square velocities, < v, 3

2 > and < v12 > at these points are zero. We assume
that the system is linear and that locations 11 and 13 are typical and therefore the blocked
forces applied at these points are equal.

Figure 4 'Experiment 1" with input force <Il 2> and "blcocked" forces < 1b11 2> and <4kb,,>.

We also assume linearity so, that the "blocked" force, < lb/2> is proportional to the mean square
plate velcity, < y> as shown by eq. (2).

<1 2> 01 <v<2> (2)

Since the power input to the plate equals the power dissipated,
23(3)<1 N >=r<v > (2)

Sine he -,l Inutto heplte qus t heG pc o r dssp ated



where:

<12 mean square mput force

G.- Real Pan of plate mobility=(Sp,x - Ic
pa- swface umas density

K- radiu of gyration
h= plate thickne
c,- loagitudinaiwave speed

'n,- plate kmu factor
M,- plate maw

<v >- average ms. plate velocity over space and time

In "experiment 2" we prescribe 2 equal mean-square velocities < v112> and < v',,> as shown
on Figure 5. Relating the prescribed velocities to "blocked" forces from "experiment 1"2, i.e.,
< V-1>= </" 2 > I y we obtain (5).

132 > = < 2>= prescribed

Figure 5 "Experiment 2" with prescribed velocity inputs.

/ 2 / <'bll 2>1 y O 121yll 12< V 1 > = V I I > Y 1 + y j 1 2( 5 )

where:

The mean square plate mobility I Yol0 2 is given by3 as shown in equation (6).
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<V102>= prescribed velocity at plate - damper junction
Y10 = drive point mobility of ma-damper

Y- drive point mobility of plate

j j 2 5 (6)

where:

Ou,2- input conductance variance -9--/SM

M= modal overl=pIIfi,/2Ff

=2 = input susceptance variance=o'

fP frequency (Hz)
8f- average modal spacing

If we assume that the locations of the mass-dampers are typical and therefore the velocities at
the mass-damper plate are the same, then each mass-damper will dissipate the same amount of
power. Furthermore, in order for energy to be conserved the power input to a mass-damper must
equal the power dissipated by it as shown by equation (7).

<v/2 > R io=C d v 0 -v/ 12 (7)
10 dIV110-V dI 7

where:

Ro= Go10 /lY 12 = 9 part of mass-damper drive point impedance
G10= drive point conductace of mass -damper

ly,012= mean square drive point mobility of mass-damper

V/ = mas -damper mass velocity

C4 = damper consta

The power input and dissipated by the plate is given by equation (8).

N<v >RM< > (8)
~~ 11

By reciprv-Itv 2 the ratio of the input force to the blocked force of "experiment 1" is equal to the
ratio of 'he prescribed velocity to the mean square plate velocity of "experiment 2" as shown
by equation (9).

<I > v/ o>(9)

<l > <v/2>
N P

Substituting equations (2),(4) and (8) in (9) and we get (1C!.
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IV= R 1 (10)

We can now get an expression for the plate velocity at the mass-damper plate junction, v'J, in
terms of the "free" plate velocity, v. by substituting (2), (5) and (8) in equation (10) which yields

) (11)

P I y o+y 1' 2

It can be shown4 that by considering v,0 to be a velocity source applied to the mass-damper
oscillator then the relative velocity across the damper can be defined in terms of the mass-
damper mobilities and the junction velocity as shown by equation (12).

VlOYVd = 10  YY)yed (12)

where:

vi- velocity at plate, mass-damper junction
v,- mms-damper mass velocity

Y.,= mobility of mm-damper damper
Y.= mobility of m-damper spring
Y,- mobility of mass-damper mass

We will now use these results to determine the mean-square transfer mobility for a plate with
N mass-dampers. Since the system is conservative,

I'I, = la. pte * nd-a. f ,m (13)

The input power is simply the product of the plate drive point conductance and the mean square
input force as shown by eq. (14).

I'Iima_-<l >- p(14)

The power dissipated by the plate is given by eq. (15) and is equal to the effective resistance of

the plate times the mean-square plate velocity.

ns, plm = (a q rMP<VP> (15)

The power dissipated by the mass-dampers is equal to the product of the number of mass-
dampers,N the damper resistance and the relative mean-square velocity across the damper as
shown by eq.(16).
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ld. ,,,, -,a, s = N Cd ; V 1 _ Vd 12  (16)

If we can now combine the results from eqs. (11)-(6) to solve for the average mean-square
transfer function for a plate with N mass-dampers which is given by eq. (!7).

<v 2>-

<f> p NC[Y,+ I ,i 0 i .12i ,z Y ( Yz)!]  (17)
Cill PMPl+NCd.- --I12_r 1, y ________

[I jY10  Y 1 l CY M.YI

It can be seen from eq. (17) that the TF for a plate with mass-dam-pers hai a similar form to that
for the plate alone eq. (1), i.e. ratio of co'iluctance to rc-.-islaice, the or;!y difference being the
additional term in the denominator of (17) w,!'ch is t e effective resistance of the mass-dampers.
Consequently, eq.(1 7 ) can be written in the fo.r,, snown by cq. (18).

2<v2><VP>' -
(18)

<2 > R +.R
<SI> p ff

where:

RP = P)nMP

Rif ~ dL yI Z,2 yjfy i 21
I id l o tY2]R =NC IY10 + "Y M' W!Y ~+ Y Y +Y Y ) 1

We define the tT as shown in equation (!9).

Tl~ff(19)

(M p

Several ORTRAN pugrars wc then w,-r:;:,,, tQ ,,.aluale the exprcssions derived here. The
results arc d ~sc..sc,- in tr. fllo. :,,I, sc on.

3.0 DT', >~)N OF ANALYTCAF 1'~ULU .

Wc V, , mw n. A . ,f t'c c . , a:ascs. More specifically we will

The plate stmlitdx1 '/8 in. d3c tk.J. 1', i;c. ( h m wide by 30 in. (.76m) long.
It w s 1 . . a fr-. I._, ,, 'iwr', trilment and had an initial
aver;fc nv. ,_ " . " 7' . . ... , 1, _ We studied this plate with
0, 10.? 1-d rmrw



The plate weighed approximately 4 kg. and the mass dampers added were from 5 to 20% of the
plate mass. For the 35 mass-damper system we evaluated the effect of varying the damper
constant, Cd on system performance. Because we were primarily interested in the 500-2500 Hz
frequency range, the mass-damper natural frequency was set to 40 Hz.

Figure 6 shows the magnitude of the average acceleration/force TF versus the ratio of the mass-
damper resistance, Cd to the Real part of the plate impedance, Re{Zp}. These calculations are
for frequencies ranging from 500 to 10,000 Hz.

100

500.0 Hz
LOk Hz

*** 1.5k Hz't n 2- oooX++* .Ok Hz

tj X 2.5k~ Hz
a 0 5. CkHz

10. Ok Hz

00 .1 0.1 10 100a

cd/J~efZ.)}

Figure 6 TF vs. Ca/Re{Zp} for plate with 10 mass-dampers evaluated at several frequencies.

It can be seen from fig. 6 that there is an optimum ratio for which the transfer function response
is minimized and that the optimum value increases with frequency. As one might expect with
either too low or too high an impedance ratio, the reduction in response is minimal.

This makes sense if we take this concept to extremes. For example if Cd=O, there would be no
power dissipated by the mass-dampers. On the other hand if Cd= oo the damper mass would
essentially be rigidly attached to the plate and hence would only be adding mass, again with no
power dissipation.

It can also be seen from Figure 6 that reduction in the transfer function is most significant at
lower frequencies. This data shows that at 500 Hz the magnitude of the TF is reduced - 6dB
when the impedance ratio is optimized. Calculations using eq. (17) showed that if we rigidly
attach 10 mass-dampers (5% plate mass) we would only expect about a 0.2 dB decrease in the
TF at 500 Hz.

Figures 7 and 8 show the TF magnitude vs. impedance ratio for 25 and 35 mass-dampers
respectively. Theses curves show the same trends as the 10 mass-damper case but with a
stro-ger effect as the number of mass-dampers is increased. With 35 mass-dampers the optimum
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impedance ratio reduces the average TF by 10 dB. Iihe optimum impedance ratio does not
change significantly as the number of mass-dampers is increased.

50

t * I , Hz

k2. HziHz
,a ×c 2 .2Ok Hz

Sooo 5,O Hz
'i~T : '. Hz

Rd /e {Z
Figure 7 TF vs. Cd/Re{Zp} for plate with 25 mass-dampers evaluated at scvpral frequencies.
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Figure 9 %,.vs. Cd/Re{Zp} for plate with 35 mass-dampers evaluated at several frequencies.

further reduces the TF as much as 10 dB at the lower frequencies.

-no db %lersI I :10
* . ial25

0,4.

Hz

Figure 10 TFs for damped plate alone and with 10, 25, and 35 mass-dampers.

4.0 MASS-DAMPER DESIGN

Visco-elastic materials were originally considered for a prototype mass-damper system but,
initial calculations showed that a material with a loss factor of at least 100 would be needed for
such a system to work, while present materials have a maximum loss factor ot = 1. A fluid film
damper approach was chosen because of the simplicity of the design and the large damping
constants that can be achieved.lt can be shown' that the damping resistance for a circular fluid
film damper is governed by eq. (20).
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Cd = 3n pd4  (20)32e 3

where:
C1= ampr z sax Nsecjm

p- dynamic isoty, N se/m 2

d- dampr diameter
e- fi thicknm

On Figure 11 can be seen a sketch of the prototype mass-damper system. It consists of an
aluminum disk which serves as both the damper mass and the fluid film damper area. The disk
diameter was 34mm, chosen so that it is less than 1/2 a bending wavelength on the plate at 2500
Hz. The disk is supported by 3 small cylinders of polyurethane foam whose spring rate was such
that the natural frequency of the system was 40 Hz. The polyurethane "springs" were bonded
to set screws which were used to vary the film thickness, e and hence the damping constant, Cd.

A bead of silicone sealant was used to contain the glycerol. Glycerol was chosen as the damping
fluid because of its high dynamic viscosity.

Top View

GE Sdkm~. sealcon iinrr nt'b~n

S re w" s for sdjusnng
.. _ .. r o $Ch , £,

d - n pcr anx:

Cmss -Seconra View

C,. A.r-n€c *.

I' t t i .t, !" a. .K .r,1.



5.0 EXPERIMENTAL APPROACH

The experiments were designed to measure the effect of varying the number of mass-dampers
and their damping constant, Cd on the average TF and loss factor, -q of the plate. A sketch of
the experimental setup is shown on Figure 13. The plate was supported by foam rubber to
simulate free-free boundary conditions. A 8 channel FFT analyzer was used to measure plate
transfer functions for the locations shown on Figure 14 for the 3 different quantities of mass-
dampers tested. Average TFs were calculated by averaging the magnitude of the 4 measured
frequency response functions using the GenRad signal processing language TSL2. A frequency
resolution of 0.25 Hz was used for all measurements. The average loss factor was measured for
4 frequency bands using the integrated impulse technique6 .

6.0 EXPERIMENTAL RESULTS

6.1 EVALIJAYlION OF 1' ASS LOADING EFFECT OF MASS-DAMPERS ON PLATE
VIBR-TION

Figure 12 shows a comparison of the average TF of the plate with 10 mass-dampers and the
average TF of the plate at the mass-damper locations. It can be seen from this figure that the

T -! -_

Aa ~izo F.t. accc6e-awon b4elow mass-dampers
Ave -ge, a-ce,:ation of free" plate

Figure 12 ".. iin _;, a; rc: (tc T1 with average TF of the plate below the

2 ,:Tc ,, SirIa[ i'r, t} *; comDrison we conclude that the r iss-dampers are not
MIV s,,,,, 'l III damper system as intended.



6.2 EFFECT OF MASS-DAIMPERS ON PLATE n X )) AVERAGE T1r

The analytia data shown in Eivure 8 sho-wed that awii'' _, t~ .. -: C~ m~ - -, .I

the TF at 1000 Hz, This is approximately the mid C'j n !i b -5{ -i <' and 'A
interest. On Table 1 can be seen the cstiimiated r.'ate lls q tor ( ' ;.25 and 35 mnass-
dampers tested with the impedance- ratio - ual to 0.32. it can 'o, seen ff~mn Tabic I that there
is a significaint increase in the measured plate loss ifa'tor as thouu~ of mass-dampers is
increased. The increase is on the order of 200-5'iD7 and en frequz--cy span of
almost 2000 Hz. It should be noted thnat due( to tht V t iui tne fluid film
thickness of this softly sprung system, the r ate~l J~~' ' n~rf approximate.
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Figure 14 Accelerometer, shaker and mass-damper locations.

5Table 1: Measured Plate Loss Factor 1, for N =0, 10,25,35

# Mass- Added Impedance I Center Freqs. of 320 Hz Wide Bands
Dampers Mass Ratio J_ ______

N %____ Cd/Re{4}) 320 Hz 960 Hz 1600 Hz 2240 Hz

None 0 N/A 0.007 0.0040 0.007 0.008

10 5 9.32 0.009 0.014 0.012 0.011

25 13 0.32 0.012 0.014 0.024 0.026

35 18 0.32 0.015 0.019 0.025 0.035J



Table 2 shows the affect of large changes in the impedance ratio on the plate loss factor for a
fixed quantity of mass-dampers. We would expect lower ratios to provide a larger loss factor
at lower frequencies and higher ratios to provide larger loss factors at higher frequencies. In
general that data on Table 2 show this trend except that we would have expected the largest
impedance ratio to have the best performance in the 2240 Hz band.

Table 2: Measured Plate Loss Factor q/, for N=35 Cd/Re{ZP}=.21,.32,.94

# Mass- Added Impedance Center Freqs. of 320 Hz Wide Bands
Dampers Mass Ratio

N % Cd/Re{ZP} 320 Hz 1 960 Hz i600 Hz 2240 Hz

35 18 0.21 0.021 0.025 0.026 0.029

35 18 0.32 0.015 0.019 0.025 0.035
35 18 0.94 0.016 0.014 0.019 0.028

Figures 15 and 16 show the average TF for the damped plate alone and the same plate with 35
mass-dampers, over frequency ranges of 10-640 Hz and 640-2540 Hz respectively. It can be
seen from these curves that above 300 Hz the magnitude of the TF is reduced by as ruch as 15
dB.

7.0 COMPARISON ON ANALYTICAL AND EXPERIMENTAL DATA

A comparison of experimental and analytical TFs can be found on Figure 17. It can be from
these curves that the analysis overestimates the TF above 1000 Hz. We also find that although
the experimental and analytical data have the same trend the analysis predicts a larger reduction
in the TF due to the ad'dition of the mass-dampers than was measured experimentally. On
average a 9 dB reduction is predicted while a 6 dB reduction was measured. Recent data
suggests t' it these differences may be influenced in part by mass loading effects of tihe silicone
bead useu o contain the glycerol.



ise. B

8. 1000 ______ ___ __________

10.B9 Freq. Hz 649.8

- 35 pools
* 35 mass-dampers

Figure 15 Comparison of average TF (10-640 Hz) for damped plate alone and damped plate
with 35 mass-dampers, C/Re(Zd 3 .32

e. 9

6.325
64V Freq. Hz 256.

- 35 pools
* 35 mass-dampers

Figure 16 Comparison of average TF (640-2540 Hz) for damped plate alone and damped plate
with 35 mass-dampers, CRe(Z,) = .32 .

DAA- 18



iee. S

Anaylical wo Dampers

a,,1 Experimental A2ItI2I 3 Xp-amera//yicl 35 a-mpr

ExpDerimental. 35 .Na.ss-Daraper%

3.162 _

64 . Freq. HzS.

Figure 17 A Comparison of analytical and experimental average TFs with and without 35 mass-
dampers.

8.0 CONCLUSIONS

SEA techniques have been used to predict the effect of impedance matched mass-dampers on the
damping of a rectangular plate. This analysis indicates that piate damping can be significantly
improved using this approach. The analysis also indicates that this method is most effective

below 2500 Hz for the plate evaluated. Analytical work' done to model 3 dimensional structures

as 2 dimensional ones has indicated that this approach can even be effective below 50 Hz. It

appears that theoretically, there is no lower limit to the frequency at which this approach is

effective, although, more mass is required to get the samne effect at lower frequencies and the

damping effect at higher frequencies is lessened.

A protot . impedance matched mass-damper system which utilized fivid film dan, ping

principles was built and tested. Experimental data has shown that this approach cai- significantly

improve the damping of a plate. Because this technique does not sha ,train .nergy with the

base structure but, rather !3oks at the base structure as a velocity source, it m.py prove useful

in dampirg structures where it is difficult to design a straki en -. sharng visco-elasiic system.

Such applTcations would typically be the low frequency mod&., )f structures which generally have

lower bending strain energies. Typical applications mlt,,'d ic * ha,-inl' [o reduce
structureborne noise levels, in buildings to reduce wiri and seismically indiicd vibr,'ions and

in automobiles or aircraft to reduce low frequetcy iY !hratl.-u.. ;ind innproe passvngrer con::,

A conceptual sketch of one such design is shown on Figure 18. It consists of a housing which
could ',. made of aluminum or plastic and a hockcy ,lh cd , r h is sofdy sprunvg

from tOi: housing in 3 orthogonal directions.



SOFT SPRINGS USED 7
TO LOCATE MASS AND RIGID

PROVIDE PROPER FLUID \ HOUSING

FILM THICKNESS

- -- DAMPER MASS

DAMPING FLUID

Figure 18 Conceptual sketch of a mass-damper design which provides damping in 3 orthogonal
directions.

The fluid level and film thickness between the mass and housing are designed such that the
system provides damping in 3 orthogonal directions, independent of its mounting orientation.
This approach is the subject of a MIT patent application. Many other configurations are possible
but, further work needs to be done to evaluate the design parameters required by particular
appplicatons.
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ANALYTICAL AND EXPERIMENTAL MODAL ANALYSIS OF A TWO-TIERED
STRUCTURE

H. V. Vu, T. K. Vuong, and W. C. Flynn, Jr.
Department of Mechanical Engineering

California State University, Long Beach
Long Beach, CA 90840

Abstract

A test structure, namely a two-tiered structure (TI'S), was used as a physical model for obtaining
modal parameters of flexible structures. These parameters, which were determined analytically and
expeilmentally, are natural frequencies, mode shapes, and damping ratios. In the analytical
portion, finite element method (FEM) was used with MSC/NASTRAN, MSC/pal 2, and
MSC/MOD. In the experimental part, the structure was excited by random noise, and frequency-
response function (FRF) plot and modal parameters were obtained. Both the HP 3566A13567A
(Hewlett Packard Spectrum/Network Analyzer) and STAR System (Structural Measurement
Systems software) were utilized. An exact model-reduction technique was used to obtain a
complete mathematical model of a reduced-order system, which includes the reduced-order
physical mass, stiffness, and damping matrices.



Introduction

Analytical and experimental modal analysis can be used to determine dynamic properties or modal
parameters of flexible structures. These modal parameters are natural frequencies, mode shapes,
and damping ratios. The characteristics of flexible structures are low natural frequencies, low
damping, and some of the modes are closely spaced.

In finite element analysis, it is necessary that the structure under consideration is modeled using a
large number of degrees of freedom (DOF's) for accurate results. But if the number of DOF's is
large, the results from finite element program become unmanageable for the purpose of design and
analysis of vibration control or for subsequent studies. A model reduction technique [1] can be
used to reduce a large-DOF model to a small-DOF model which exactly represents the first few
modes.

In experimental modal analysis [2-4], also called modal testing, natural frequencies and damping
ratios can be obtained from the frequency response function (FRF) plot. In modal testing it is
important to have high-quality test setup, testing craftsmanship, and data processing, etc.

The equations of motion of a structure can be written in the configuration-space form [51 as

mx + cx + kx =f (1)

where m, k, and c are the physical mass, stiffness, and damping matrices, respectively; and f is
the applied forcing vector.

The physical mass and stffness matrices of a structure under consideration can be obtained
analytically by the given physical properties, dimensions, and boundary conditions; however, the
physical damping matrix must be determined experimentally.

A complete mathematical model of a reduced-order system will be determined, which includes the
reduced-order physical mass, stiffness, and damping matrices.

The Test Structure

The test structure, a two-tiered structure (TTS), shown in Fig. 1, is chosen so it can be used for
studying vibration characteristics of flexible structures. It was designed specifically to possess the
following characteristics:

low natural frequencies, light damping, and intuitive mode shapes for the first few modes
inexpensive and easy to build
instructive for analytical analysis and computer simulation, and experimental modal analysis

Finite Element Model

A finite element model of the structure is created using MSC/ OD (Fig. 2). The floors and the
columns are modeled by plate elements and bar elements, respectively. The brackets connecting
the plates and columns a modeled by concentrated mass elements. The model has 136 elements,
146 nodal points and 790 (active) degrees of freedoms (n = 790). It may appear that the number of
plate elements is more than adequate; however, in this study, the modzL is relatively small and
simple so that mesh optimization is ignored.
The finite element model is then analyzed by uSing two commercially available finite element

analysis packages: MSC/NASTRAN (on main-frame computer), and MSC/IOD and MSC/pal 2
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(on MS-DOS machine) [6]. The undamped natural frequencies obtained, using these packages, are

given in Table 1, and the corresponding mode shapes (from MSC/pal 2) are shown in Figs. 3-8.

Exact Model Reduction

For the undamped free vibration or eigenvalue problem, Eq. (1) reduces to

nR + kx = 0 (2)

When the structure vibrates in its natural modes, we have

(k -co, 2m)0, = 0 r = 1,2,..., n (3)

where o, and 0, are the undamped natural frequencies and the corresponding mode-shape vectors,
respectively.

The orthogonality properties are mass normalized so that the modal mass and stiffness matrices are
given as

M = (Drm(D I
(4)

K = Tk = diag[o 2]  r n 
(4)

where the full-order (mass-normalized) mode-shape matrix is given as

D= 0 ... (5)

The full-order physical mass and stiffness matrices can be written, from Eq. (4). as

m
(6)

k =c-Tdiag[oj,]cb-l r = 1 2, ... , n

The 790-DOF full-order model (n = 790) is reduced to a 6-DOF reduced-order model (m = 6)
which exac:ly represents the first six modes using L1]. The reduced-order model is obtained by
selecting, . four translational DOF's located at the centers of the floors for the first four bending
modes. For each of the first two torsional modes, the angular DOF is defined by a set of any two
translational DOF's of a given floor. Using the numerical values of the full-order mode-shape
matrix (from NISC/NASTRAN, not shown), the reduced-order mode-shape matrix can be selected
as
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(DR

4.175227" 0 0 6.274968 0 0

0 4.195279 0 0 -6.261847 0

0 0 -0.500879 0 0 0.657553

6.724909 0 0 -4.559574 0 0
0 6.710377 0 0 4.580626 0

0 0 .- 0.711376 0 0 -0.561635

(7)
where the subscript R denotes reduced-order model.

The differential equations for undamped free vibration of the reduced-order model are given as

JMRXR + kRxR = 0 (8)
where

mR = R-T R
-
1

kR= (DR-rdiag[wO'2]nR
-  r = 1, 2,..., m (9)

XR={Xl y1 191 x2 y 2 1-021 T  (10)

The numerical value 1 in Eq. (10) has dimension of length so xR is dimensionally homogeneou:s,
and the subscripts 1 and 2 denote the middle floor and the top floor, respectively (Fig. 1).

Irodung f' om 1. ' Eq. (7) ' a 1 m,r T abl 1 (MSC /NASTRAN) into Eq. (9), we have

1.7605 0 0 0.0142 0 0

0 1.7604 0 0 0.0142 0
146.40 2.31530 0 1 0 0 12 lbf S

fR=10 2 0.0142 0 0 1.5149 0 0 in

0 0.0142 0 0 1.5150 0
0 2.3153 121.77

12 12 (11)

0.0171 0 0 -0.0084 0 0

0 0.0171 0 0 -0.0085 0
2.0839 -1.12830 0 12 0 0 1 lb,kR =10, -0.0084 0 0 0.0082 0 0 in

0 -0.0085 0 0 0.0083 0
-1.1283 1.19210 0 0 0

The numerical value 12 in Eq. (11) has dimension of length squared so the elements of mR and kR
have proper dimensions.
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Modal Testing

The experimental setup is shown in Fig. 9. Continuous random signal and Hanning window were
used to obtain the FRF plot (Fig. 10). This plot includes the first six modes of the structure, of
which the natural frequencies can be read directly. In the process of obtaining the modal damping
ratios, tho FRF data was first convened from the HP 3566A/3567A format to the STAR System
format, then curve fitting methods were used. For widely spaced modes, the determination of
damping ratios by curve fitting is straight forward; because in these modes, the structure behaves
as if it vere single degree of freedom (SDOF). However, for closely spaced modes, the damping
ratios are difficult to obtained with great accuracy. The experimental results for natural frequencies
-o and damping ratios ,- are given in Table 2.

Physical Damping Matrix

A physical damping matrix can be determined as

cR = cI)Rdiag[2gTo] (DR- r = 1, 2, ... , n, (12)

The modal damping matrix is given as

(C., diag[2, o),]=diag[0.4008 0.3314 0.1633 0.9068 0.8671 0.2771] rad (13)
S

or

(Cp) diag[2co),=diag[0.4032 0.3191 0.1184 0.9392 0.8767 0.2205] r - d (14)
S

where !,, in Eqs. (13) and (14) are the experimental and analytical MSC/NA-TRAN, Table 1)
natural frequencies, respectively.

Introducing Eqs. (7, 13) into Eq. (12), we have

0.0132 0 0 -0.0037 0 0

0 0.0123 0 0 -0.0040 0

0 0.3417 0 0 -0.0685
-0 0 12 0 0 12 f1 s (15)
--0.0037 0 0 0.0084 0 0 in

0 -). 0040 0 0 0.0075 0
-0.0685 0.2497

0 0 0 0

Til,: 1a "')cI l .jc ', in E-q. (15) has (ImcnSior) Of !LrL!1 SqCLlircd so c. is dimcnsionall,
h ) I () -, rl n,,, () % ,.

Concluding Remarks

,X c:;: 'x ',,k m .::ticim l i Thl: I tIC :d lt ! (oder svstem iha- been dctc nin ci, as i , n by

mtX: . ., -kx -0 k, 16)



It should be noted that the physical damping matrix can be obtained using the experimencal
damping ratios and experhoental/analytical natural frequencies and mode-shape matrix. If the
physical damping matrix is proportional, the modal damping matrix is diagonal, or if thz off-
diagonal elements of the modal damping matrix are negligible, then the physical damping matrix
can be approximated as proportional. Modal analysis can, then, be performed since the- cquations
of motion can be decoupled via orthogonality properties [7].

Table I shows that the results obtained from the finite-element model agree very well with the
experimental results in bending modes but not so well in torsional modes. Some explanation for
these discrepancies is currently being sought.
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Table I Comparison of Experimental and Analytical Natural Frequencies

Mode Experimental MSC/pal 2 MSC/NAS' RN
Number (Hz) (Hz) (% Diff.) (Hz) (% Dit.

1 2.125 2.184 (+2.78) 2.228 (+4.85)

2 2.334 2.225 (-4.76) 2.247 (-3.73)

3 3.938 2.796 (-29.00) 2.854 (-27.53)

4 5.594 5.746 (+2.72) 5.794 (+2.77)

5 5.750 5.789 (+0.68) 5.814 (+1.11)

6 9.188 7.224 (-21.38) 7.311 (-20.43)

Table 2 Experimental Natural Frequencies and Damping Ratios

Mode Frequency Damping Ratio
Number (Hz) (%)

1 2.125 1.44

2 2.334 i.13

3 3.938 0.33

4 5.594 1.29

5 5.750 1.20

6 9.188 0.24
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Fig 3 First x-z bendincy 2.184 Hz Fig. 4 First y -. bending, 2.225 Hz

Fig. 5 First z torsion, 2.796 Hz Fig. 6 Second X-7 bending, 5.746 Hz

Fig. 7 Second y-z bending., 5.789 Hz Figo. 8 Second z torsion, 7.22 4 H z
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DEVELOPMENT OF A MAGNETIC
SUSPENSION SYSTEM FOR RELIABLE

VIBRATION DAMPING MEASUREMENT

Dantam K. Rao'
Mechanical Teclmology, Inc.

Latham, NY

ABSTRACT

The damping properties of viscoelastic polymeric materials, as measured by dif-
ferent organizations and test techniques, often differ considerably. Sources for the
discrepancy include parasitic energy dissipation at clamped supports of sandwich
beam configurations, as well as imperfect simulation of a perfect clamped end condi-
tion. This uncertz inty can be eliminated by magnetically suspending the test beam
in a free configuration, without mechanical contact for pickup or excitation.

This paper will describe an approach tc develop a proof-of-principle magnetic
suspension system to levitate a typical test beam. The magnetic suspension system
consists of an attraction electromagnet whose stiffness is controlled by closed loop
feedback system.

Controllable stiffness of magnetic suspension will help eliminate measurement
discrepancies at.tributable to the use of different fixtures by different organizations
to clamp sandwich beams

FULL PAPER NOT AVAILABLE FOR
PUBLICATION

1Mechsncial Technology, Inc., 968 Albany-Shaker Road, Latham, NY 12110, (518) 785-2489
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VEM CHARACTERIZATION PROGRAM

Bryce L. Fowler*
CSA Engineering, Inc.
Palo Alto, California

ABSTRACT

The development and use of an interactive computer program for the characteri:a-
tion of complex modulus data is described. The program uses the collocation process
which accurately fits the real part of the complex modulus data and then uses the
lack of fit of the lous factor to adjust the temperature shift function. This iterative
method, which has converged when both the real modulus and the loss factor are
fit simultaneously (the real directly and the loss factor indirectly), yields the most
accurate estimate of the temperature shift function possible.

'CSA Engineering, 560 San Antonio Road, Suite 101, Palo Alto, CA 94306-4682, (415) 494-7351
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1. Introduction

Successful design of passive damping treatments using viscoelastic materials (VEM's)
such as elastomers depends upon several factors. One important factor is accurate
knowledge of the sensitivity of VEM properties to variations in temperature and fre-
quency. Since it is impossible to test a viscoelastic material at every combination of
temperaturP and frequency, the material is tested at discrete temperatures and fre-
quencies and a mathematical relationship is developed that characterizes the material
at all other combinations of temperature and frequency. This process is referred to

as characterization.

The equations used in characterization are parametric in nature. They are easily
represented on computers. The difficulty lies in correctly choosing the equation pa-
rameters so that they accurately represent the VEM's. Interactive computer graphics
have greatly irnprnved the process of choosing and adjusting the correct parametric
values.

This paper describes a recently developed computer program which implements
the Collocation process [1] to accurately characterize viscoelastic materials.

2. VEMINT MAC

VEMINT MAC is a computer program developed to run on Apple Macintosh II
computers. It fully utilizes the Macintosh windowing environment to allow point-
and-click manipulation of complex modulus data. VEMINT MAC incorporates new
characterization models as well as many of the models used in the past.

Five analytical representations of the temperature shift function (TSF, or QT) are
available. They are

1. Spline fit of slope

2. WLF equation

3. Iog(UT) is an exponential

4. d(log(0T))/dT is quadratic in 1/T

5. Arrhenius equation

The "Spline fit of slope" model is discussed later in more detail. VEMINT MAC
also has the capability to use the historical, discretized (tabulated for each experi-
mental temperature) representation of T.
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2.90. 6200 2.7-1 5 4eI 174-I24e-2 FALSE
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72.990-.2 2.50e+0 23420-I !453 1 2 I 02e- 1 3 645e- 2 TRUSE

9 2.990e +2 13.15.1 3.590e- I IS 60e- 1 2.336e-1 3.645e-2 TRUSE
10 .90.. 125.. 360-i 70e 1-2i ' 160 -i63 0SS-2 TALUE

61 2.990-.2 H7e+. i 37920t-i 80 e 2 6-.9, 3.055e-? 2 TRUE

18 2.990e*2 I 00.e+ 1 3.40e-I 7:6500. 1 2 2.- I 3.055e-2 TRUE

i990Figur 1. VE1N MAC-'- data9e Indowe-2 RU

Seven.......... comle mouu ..quation. ar avilbl in V..N MAC... .. ....... ..... They.... ar..

1. Ratioe+ of+fctoe polynomials t 1- 305e- TU

2. -R o er e m pirical.. .. ..................... ........... .. ....... ........ .. ......

Dataen moel podulameeros are vplayed by VEMINT MAC. naspeheaelk

wido inle whaicncaatrztoloesaecoe sn ou eu Fgr )

VMData isd roead intotraedipaydb VEMINT MAC in th fompfrSCIeexafls tthet format

shown in Figure 2. Tab-delimeted and English data formats are also supported. The
data in Figure 2 has already been characterized. New uncharacterized data must have
the same genoral format, but only the first four data fields are necessary, as shown in
Figure 3.
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001 3M ISD 113 SHEAR
----------------------------------------------------------- -----------

ALFA-T MODEL
NALF NA A(1) A(2) A(3) A(4) A(5) A(6)
4 6 290. 220. 400. 5.016E-02 0.102 1.580E-03

--------------- 4.-+----------+-------------+----------+---------------

COMPLEX MODULUS MODEL
NVEM NB B(1) B(2) B(3) 8(4) B£n) 8(6)
4 6 4.190E-02 499. 4.640E+06 0.675 1.95 7.850E-02

S ----------------------------------------------------- +-------------

COMPLEX MODULUS DATA AS A FUNCTION OF TEMPERATURE AND FREQUENCY
Temp Freq MReal Eta MImag Alpha-t

(DEG K) (HZ) (MPA) (MPA)
227.6 1861. 261.1 7.5670E-02 19.76 2.7260E+04 T
227.6 3579. 289.1 7.3270E-02 21.18 2.7260E+04 T
227.6 5788. 307.7 6.6440E-02 20.44 2.7260f+04 T
241.5 1828. 170.1 0.2031 34.55 1576. T
241.5 3486. 179.8 0.2133 38.35 1576. T

241.5 5591. 188.0 0.2006 37.71 1576. T
255.4 638.0 29.06 0.90i8 26.21 129.9 T

Figure 2. VEM data previously chaacterized

The Macint, :. windowing interface is fully utilized to allow the user to simulta-
neously ri. . iplh plots and data side-by-side. Erroneous points, as might be
observed " o, .k, or the reduced frequency plots, may be double-clicked on and
their corresponding values are displayed in the data window.

The Collocation method is used to characterize all new data. The method uses
the "Spline fit of slope" temperature shift model in conjunction with the "Ratio
of factored polynomials" complex rnoduiu., mi1odcl. Thi is ,escrihA i- more detail

below.

Once characterized, hardcopy of plots, such as the International and Wicket plots,

as well as numerical data may be laser printed. VEMINTr MAC provides all the plots
and data described in the proposed ISO standard [41. Thse are

1. An updated tabulated data file

2. Plots of log(r?) vs. log(Gi(f, T)) in S.I. and English. (Wickct plot)

3 A plot of log(mi), d(!' g(rr))/dT, tnd apparent activation encrgy vs. tempera-

ture
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---------------------------------------------------------------------- +--------------

ALFA-T MODEL

NALF NA A

0 0
S4.------------------ ------------------ +------------------------------------------

COMPLEX MODULUS MODEL

NVEM NB B

0 0

------------- 4-------- -- +---------------+---------------------------4---------------

COMPLEX MODULUS DATA AS A FUNCTION OF TEMPERATURE AND FREQUENCY

Temp Freq MReal Eta
(DEG K) (HZ) (MPA)

227.6 1861. 261.1 7.5670E-02
227.6 3579. 289.1 7.3270E-02

227.6 5788. 307.7 6.6440E-02

241.5 1828. 170.1 0.2031

241.5 3486. 179.8 0.2133

241.5 5591. 188.0 0.2006

255.4 638.0 29.06 0.9018

Figure 3. Uncharacterized VEM data
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4.Apoto ogcy v.I/ temperature

5. Plots of log(frequienex ) vs. temperatutre, (S.I. and English)

6, Plots of log(G0 ?(fT)), log(G ~ (f. T)), anid log(rl) vs. temrperature, (S.I. arnd

English)

T Plots Of 1og907) vs. l0g(G;R(f, T)) with constant temperature linies arid anc-
perimnental frequency axis (Reduced WNicket plot) inl both S.1. and Engllih

S. Plots of log(G'Fj(f, T)), log(G*1 (f, T)I), anid log(rj) vs. reduced frequency wtv
constant temrrperature lines and an experimntal frequency axis (International
plot) in both S.I. and English

3. Temperature Shift Function

flisto.ricallv, thfe WLIF equationi [2] hsbe sdt eieteTP.Ti.hwvr a
not been able to shift all viscoelwstic mattli J data correctly outside the transition. '
new approach is to use, a spline fit Of the Slope Of log CkT for a relatively small number
(At temnperature points (e.g., 7 points) to define the TSF. The temperature points are
calculated such tho c the corresponding (17' valucs are equally spaced on the vertical

log scale'.

The Wicket plot. (Figure 4) is used interactively to obtain values for the rmaximunm
loss factor (T,,n,), the rubbery modulus asymptote (G(--, and the glassy modulus
as. v mnptote (GgL) Thc transition region is defined by rjcutoff, which is calculated a~s

( 7q"a.

Tlhe referecec temiperature, Tree is obtained in two steps, first as the average of
the temnperatuores defining the transition region, Trefl (I7 cutoff-min iTcutof, ,:Lx j / 2.
fn r31 it was shown that the time-(lepeniderlt stress-strain relations for a viscoelastic
matriial in H L transi n region is described bY

,x here

.1''( 2fc '2 *

-1~0 -l C -
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Figure 4. Wicket plot used to determine parameters

Solving for ar/fg, gives

froT 1 [G; G(T (2)

fpo jf1 [ 9G "

By fitting a quadratic through the data points defined within the transition by

7? 77cutoff an initial value for the slope of the log of OT at Trcfl is calculated. Next,
a quadratic fit of log 77 versus reduced temperature, where the reduced temperature
is given by

Tred, = Tex )o (3)
S r. Trlr

is used to calculate Tref = Tred evaluated at 77m. A value of 100 tHz is presently used
for f. The final reference slope, Srd, is re-calculated from the quadratic through
Equation 2.

A plot of log aT versus T is then displayed, where (T is calculated from the
"d(log(aT))/dT is quadratic in 11T" equation. As shown in Figure 5, the user may
adjust the temperature shift function outside the transition by changing the values
of d(log(aT))/dT (designated as SAL and SAZ) at the endpoints. Finally, aT is
calculated as the integral of the spline of the slope, where the constant of integration
is given by oT - 1.0 at Tref.
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Figure 5. Adjust d(log(aT))/dT endpoints

The accuracy of the TSF parameters is checked by looking at a plot of the complex
modulus data versus the reduced frequency. The spline knots may be interactively
adjusted if any isotherm "shingles" are observed (Figures 6 and 7). Note, the reduced
frequency at each temperature knot is calculated as

fR = CT (Tknoti) fref (4)

where frei here is calculated as the geometric mean of the experimental frequencies

log (fref) ( log fexp,) /n (5)

4. Complex Modulus

The "Ratio of factored polynomials" model is given by

G(z) G, 11 r"k (6)

where

z j27rfR

c (Gq/e) 1 /2N
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In the present effort 3k = 0.7 although values from 0.5 to 1.0 have been used in
the past.

Initial values of ri are generated by first calculating logarithmically even spaced
values between Ge and G9 with

GrCtI = Ge

Gfit2 = Gfitle2

Gfit n = Gfitn_ e
2

A smoothing spline is fit to the magnitude complex modulus versus the reduced
frequency. To ensure full coverage from rubbery to glassy plateaus, the spline is
extended six decades below and above the minimum and maximum experimental
reduced frequencies respectively. Each r, is initialized as the reduced frequency at
each Gfitj on the spline. The r, values are then iteratively refined with

Tnew = rio°d fi , (7)

to fit Equation 6 to the magnitude modulus spline, where fRcurvei is the reduced
frequency for Equation 6 which returns Gfit,. The exponent ( is set less than unity to
keep individual iterative steps from overshooting the spline. A value of 0.5 is presently
used.

5. Collocation

In addition to the smoothing spline fit through the magnitude modulus versus reduced
frequency, a smoothing spline is also fit through 77 versus the reduced frequency. This
is assumed to be the best estimate of the experimental loss factor. Starting with
the TSF knot closest to the reference temperature and alternately working out, the
corresponding reduced frequency is calculated using Equation 4. The equation

Snew = Soldlarc tan (07curv,) (8)
arctan (rTIp,)

is then used to iteratively adjust the TSF based on the lack of fit of Equation 6. (Note,
within the program, Sne,, is constrained to be within a user-defined percentage of

This is in contrast to [11 where the Wicket plot was used to make the comparison
between rmc,,v and re,,. The change to using r7 versus reduced frequency alleviates
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Figure 8. Loss factor divergence at x0

possible problems encountered with numerical ill conditioning outside the transition
where the slope of the Wicket typically gets steep. The plot of 77 versus reduced
frequency is easily extended to allow the interactive adjustment of the TSF knots
directly on the computer screen as seen in Figures 6 and 7.

After all the TSF knots have been adjusted, the smoothing splines are re-fit for
both the magnitude modulus and the !oss factor to the new reduced frequency and
Equations 7 and 8 are repeated. The process stops when S,, is within 1% of Sold

for every knot, or when a user specified number of iterations have taken place.

6. Observations

The need for good characterization has always been present. With advances in damp-
ing design tools the need has become even more critical.

The program VEMINT MAC has gone a long way toward more accurate charac-
terization of VEMs; however, numerical difficulties still exist. It has been obs rved
that outside the transition, 7 7curve and 77ep may begin to diverge at some reduced
frequency. This may be especially true when coverage of experimental frequency is
limited (Figure 10). A correction can be applied to the r,'s that does not change the
modulus appreciably but does correctly adjust the loss factor and is the subject of
further study.
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VEMINT MAC, provides a great increase in the speed and accuracy with which
damping material characterizations may be processed. The materials user may quickly
find particular data points and set initial parameter values using the graphical inter-
face.

The use of the Collocation method effectively allows the data to define the TSF,
thus precluding possible errors due to operator bias. Numerical instabilities still need
to be addressed, however.
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ABSTRACT

Measurements of the damping properties of materials continues to be a major

effort at Anatrol to provide the basis for using both the damping and isolation

technologies. The current library of the damping properties at Anatrol contains

over a thousand materials and is being expanded on a daily basis. Those

materials have been completely characterized for their damping properties and are

stored on the computer in terms of:

* temperature and frequency

* dynamic and static non-linearities

* creep and relaxation behavior

* aging, outgassing, etc.

The properties for most of these materials have been measured by more than one

technique covering wide ranges of temperatures and frequencies to ensure their

accuracies and to arrive at the appropriate shift factor reducing the data.

This paper will give examples of the properties for various families of materials

currently on the data base and how they can be accessed by various users working

in the damping and isolation areas.

Anatrol Corporation, 10895 Indeco Drive, Cincinnati, Ohio, 45241

Tel: (513) 793-8844
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I. INTRODUCTION

Reducing noise and vibration levels in various products has been receiving more

and more attention in recent years. This increased level of awareness has been
caused not only by the need to build better, more effic-ient items, but also

because prooi-ts with low noise and vibrational response are now being perceived
as having bette, quality. Products with low noise and vibrational
characteristics can be desigc d by implementing both passive and active conttrol

systems. The approach for passive con.rol systems consists of mainly using
structural damping, and isolation. B-fore either the damping
and/or the isolation technologies can be properly utilized, how"..... a good

knowledge of the dynamic behavior of the materials as functions of di.ferent
environments ueeds to be known. Without such properties on hand it becomes very

difficult to perform the analysis and optimize the design for a given system.

Available information on the properties of materials, either from manufacturers
or in the open literature, is limited, has considerabie scatter, and covers onl'

some environmental ranges. To overcome these limitations, Anatrol has undertaken
the task of measuring and evaluating the dynamic properties of materials under

various conditions. This information has been gathered to establish an extensive
data base used to assist in the design and implementation of passive control
svstt--- Over the past fourteen years, measurements have been made on several
thousand different materials including structural adhesives. PSA's, plastics,

enamels. rubber materials, foams, and composites.

The various techniques that have been used to measure the dynamic properties of
materials at Anatrol, include those that are in the frequency domain, such as the
impedance and beam techniques, and those that are in the time domain, such as the
relaxation and creep techniques. From those measurements the properties of the
specific material of interest is then generated in terms of temperature,

frequency, static non-linearity, dynamic non-linearity, and time under load.
Those properties are then curve fitted with analytical expressions and stored or
the computer as analytical functions along with other information, such as their
form of availability, resistance to solvents, outgassing, aging effects, and sc

on.

The purpose of this paper is to describe the current data base that Ls nou
available at Anatrol. and how it can be accessed by users to design variou5

passive control systems. Specific detai-s regarding the measurement techuiiu]les.
presentation of the data, and the curve fitting analysi s can be found ir
Reference '1'.

II. EASURRENT TEC"MN QUES

Difterent measurement techniques are needed to evaluate the dynamic propertic

of materials because such properties vary greatly with the differen!
environment s, ard currint lv there is no one technique that is capable of coverin
such ext reme ranges Another important reason for generating the data by mor,
that, one technique is to cover wide temperature and frequency ra, 6e fur tht
measurements to establish confidence in using the temperature-frequency

superposition principle. Without having measured the atp over such widE
nmper,-ru f r - qutncv ranges and verified the accuracy of the shift fac- r

the iSF , tempc ua ,re-frequency superposition princlpl is likelv to bf
qu '-;t i )tId. Anatrol b;,. put forth the extra effort to make the meastirelIient s b-



several techniques and over wide temperature and frequency ranges to establish
good confidence in the data base.

The variois techniques that have been primarily used to generate the material
properties in the data base include, the beam technique, the impedance technique,
and the relaxation and creep techniques. Both the beam and impedance techniques
are used to measure the dynamic properties of materials in the frequency domain
at different temperatureq and dynamic loading conditions. The creep and
relaxation techniques are used to measure the relaxation modulus and the creep
compliance as functions of time under different loading conditions.

TT.1 BEAM TECHNIQUE

The beam technique is used to measure the dynamic properties of materials in
either shear or tension/compression over wide temperature and freauency ranges,
in the linear region of the material in terms of strain amplitude. The frequency
range where this technique is typically used is between from about 50 to 5,000
Hz. The technique is based on combining the material of interest to a metal beam
and making measurements on the composite system. By knowing the frequencies of
the various modes of vibration and their damping values along with the geometry
of the beam, the dynamic properties of the material under test can be computed
independent of the geometry. Typical properties for a material measured in shear
by the beam technique are given in Figure 1.

11.2 IMPEDANCE TECHNIQUE

The impedance technique consists of applying a known force into a sample and
measuring the resultant displacement. The force and displacement signals and the
phase angle between them are used to compute the dynamic properties of the
materials. Loading is typically applied in either tension/compression or shear,
depending on the geometry of the sample, to generate either Young's modulus or
the shear modulus. The impedance technique can cover frequency ranges from as
low as 10' Hz to 1000 Hz. It is difficult to use the impedance technique at
higher frequencies because of fixture resonances. Also, it is difficult to use
this technique for may materials when testing in the glassy region because the
test specimen can approach the stiffness of the fixture. Even with such
limitatinns however, the material properties can be generated over wide
temperature and frequency ranges. Also, by using simple geometry and varying the
force, the behavior of the material in terms of loading (static or dynamic) can
be measured.

Figure 2 represents the results measured by the impedance technique in shear over
a wide frequency range and at some selected temperatures.

11.3 RELAXATION AND CREEP TECHNIQUES

The relaxation and creep techniques are used to determine the response 1 f the
materials under load as a function of time. With the relaxation technique, a
fixed displacement is applied to the sample and the resultant force is measured
as a function of time. From such a measurement the relaxation modulus as a
function of time can be computed. On the other hand, the creep technique is
based upon applying a fixed force to the sample and measuring the resultant
displacement as a function of time, which will yield the creep compliance as a
function of time. The relaxation technique is usually used for soft materials
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while tie creep technique is used for stiff materials. TeN.ti onicrC.MreQsoon or

shear specimens could be used with either techniquo.

Not only the behavicr of the material under load as a function of time car be
determined from such mea-4rements, but the results can also be used to compute

the dvnamic proper ies o the material at extremely low frcqwncv, by
transforming the measu;red data from the time domain into the tiiecuen-:v domain

Figure 3 represents r vpical results for the rel axatioi aod! w.5 -asured A
different temperaturts with time.

11.4 CORRELATION OF THE PROPERTIES

Figure 4 combines the . sults of Figure 1 and 2 together. it canL e seen here
that good corrul : nu ha.-s been nchieved between the two tvchviqu,- even though
those measured v The impedance technique are for low trequen: n, "1ile those
tor the beam te-hrique are tot high frequency. This kind of cor-' tiou K'ives
confidence in the shift factor used to ccllapse all the data. Figute 4 is curve
fitt'ed wilk' Mal , expre.nions which are then stored on the computer for
lWter use

The correlation of the measured resultq by the impedance, beam, and relaxatior
techniques is shown in Figure 5 for several samples. The agref.m_.t between the
various techniques illustrates that each technique is being wel! used within its
limitat ion and nc erroneous data is generated.

III, DESCRIPTION OF THE DATA BASE

II .1 MEASUREMENT CONDITIONS

All materials in the data base are measured either in tension/compression tc
generate the properties in extenston (Young's moduit s and loss factor) and./or it
shear to generate the properties in shear (shear modulus and loss factor), fl

the properties are measured in both states of stress, then Poisscn's ratio caT
be computed. If the propertit are measured in one state of stress only. -and the
material has a rubber-like behavior, then Poisson's ratio carn be assuecd to LE
almost (.) and the properties in the other state of stress can be crmpured.
Figure 6 represents the properties for the material of Fiiore /4 but for botl
states of strvss.

All materials in the database are measured over wide temperax re an'. frequenc
ranges to enatl( curve fitting of the data with analytical expc cssions as shoWr

in Fiemre 4. Such ni *tPical expressions are then stored nN the computer for

later analvsis or 1 it-aturn search as necessary. in tht toilrwTng Figures, tQ
analvticli cxpt',egs orn; ar used to desc|ribe the wre; iai 1. l.-fA iU) terms or
temp er-nture f ir soume dircirte froquecies. Other frqrerq 1-ic s co.ld he corer ate(

from t te -tOrCi V'ro.T it~n ''Iai aS tof cessary.

III tnit ti ., t b . m, udi t rnv of the material.s in ti. e.a "aqc ar

also m'asgtred int term r; static nor-linearitv. d-namic arr- i: r~arltv aging
exp qrure h, high t -ot - rr,", - and xpwsure to fuel and ' , t.! ,tto- s Figore,
" thr III I 1 ;: '-. ' tIe ' & f'Lt. of Sorth V 'i ate Or 0 - T hoe m ,'PC
pro pnr~ ' ''7



111.2 TYPES OF MATERIALS

Although it is difficult to classify all the materials in the data base, some

classifications could be used as follows.

ELSTOM~ERS

This heading include; al 1 materiais p:ith r';hber-like behavior ;it room
temperature. Specificallv. such mate]iql.s include the silicones, natural

rubbers, vitons, butyls, nitriles, ABS, and so on. Figure 11 through 14
illustrate the properties of some of the materials in this category. Such
materials are used in various isolation systems, tuned dampers, and some

constrained and unconstraired layer damping tre tments.

PRESSURE SENSITIVE ADHESIVES

Pressure sensitive adhesives are wide, used ns . damping materials in

constrained layer damping treatments. Such materials could be of the acrylic,
silicone or rubber base type. Figure 15 and 16 give the properties of some of

these materials.

Many plastics are used as structural materials and as damping materials at high
temperatures. Those materials could include the various vinyls, styrenes, PMMA,

PEEK, PVC, polypropylenes. polysulphones, nylons, and so on, Figure 17 and 18
contain the properties of some of the plastics from the data base.

FOAMS

Foams can be made from several materials such as acrylics, polyurethanes,

silicones, etc. and therefore, can have varying properties, as shown in Figures
19 and 20.

SPRAYABLE MATERIALS

Materials in this category include those that couid be spraved on the structure,
for ease of application. The use of such materials is to provide extensional

damping over wide frequency ranges. Figures 21 and 22 illustrate the dynamic

properties of only two of the materials.

AUTOMOTIVE BODY PANEL MATERIALS

The materials under this heading, which are called "Mastics", are usually applied
to automotive body panels to provide damping. The materials can be either of the
heat bondable type or the type that requires a pressure sensitive adhesive for

application. These materials have good damping properties arounO room
temperature as shown in Figures 23 and 24.

DAMPED LAMINATES

Laminates are now being used in various sheet metal applications in the
automotive, aircraft, and appliance industries to provide high damping. Because
such materials are sold in the laminate form (two layers of metal sandwiching a
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111.6 COMPOSITES

The data base includes both metal inatrix composites and resin reinforced
composites. Those composites are usually measured assumir, they are homogeneous

materials, and such properties are shovn in Figures 33 a.-] 37.

IV. ACCESS OF THE DATA BASE

The data base at Anatrol can be accessed in two ways. The first is for Anatrol

to perform a literature search for the customer on a job-by-job basis. This

search will be based on the customer specifying to Anatrol, the material

properties of interest, and the environmental factors to be considered in the
search. The second is for Anatrol to install parts, or all of the data base on

the customer's computer. For either case, Anarrol will discuss the specific

requirements and scope of this service with the customer and quote it

accordingly.

REFERENCE

1. A.D. Nashif, D.I.G. Jones and J.P. Henderson. Vibration Dampin, Wiley
Interscience. 1985.

DBB-7



/ M 1 u - X T
2 1

FocU j euec Nooga fo. y a a
i St- ' IF np , eV rtig FeqpT-

'10 iny iib

* J Vt

*t4 
.-V.,~y



Temperature 'C

F-i x ~

leiI~ T.88

X i1
x U

o 86 0 10 4 -

:I - 1I8- 1 xx1

aD)

(.1

) - X X 10

L 0 X Beam (90 to 3000 Hz)o 0 Impedance (10 to 500 1
- I- 10.3 * A Impe dance (100 to 2000 Hz) 18

L 0- 0 ReIlaxation (20-5 to 50-3 Hz)00I o Creep (1e-5 to 30-2 Hz)

4 tW 14 0 -. 9 10 11-uel 128

_C -5 4 3-21 2 3 4 5 6 10 102
() 18- 1o1- Ito t 1 10 10 10  10  1o 1 1 10  18 10 1 8 1

Reduced Frequency fat

Figure 5: Reduced Frequency Nomogram for a Typical Material

Using Various Measurement Techniques

Temperature C
\ 10

x 110

100

N

9d S

I9o *t 1/
'AA

C L N X 1 0 -

0 t -.

o o 0831

aA Extension
0 X, 0 Shear

o 21_8 1 371 1 1 14 -

0 ili0-18-10-3@-?0-118
I  181 182  183  184 18

5  186  18 188  18 18 181 1 801181

u Reduced Frequency fcxt

Figure 6: Material Properties for Shear and Extension Using
the Vibrating Beaw and Impedance Techniques
[Library #580 - Vinyl Rubber

DBB-9



leB _______________________________

9e 7

8e 7

707

S5e7

3O 7 21 70

30

S20* 33.90 C

Figure 3: Relaxation Modulus Properties for a Typical
Material at Various Temperatures over Time

Temperature 0C

101 10

08 2

C:

o t

0 10 t

o 1
f~

toI 5 4 1100 1 , 3 4 5 6 11 B 9 10 '1 1 1 i3 14
(,n 0 10 0 to 10 0 10 10 10 to 10 to 10 0 I 0 10 10 10

Peduce!i FrequencvY fat

Figure 4: Reduced Frequency Nomogramt for Both the Vibrating
Beam and Impedance Techniques in Shear
[Library #580 -Vinyl Rubberi



CLL

-4-

o .031 _

1*.1 - 0 - - - - - - - - - - L
0.00 1- __ __(

1 00
0 :0

02
le-e Is 8E2h

I ' I '10015988 Hz I,

to14 5 - -* - - -- - - - - -t

3 00
L.

0.00

C3 2o 21.819

4. (8

0
-. "05018IS 0 0.01 3 -

[Lbrr #24 1-5 RubrCopud

I' ID 215DBB-11



10S 9 101

1000 Hz
r-d

L- JO 1 10 0

U- I-
0 V3

00

10' 10

L 2
0 " L

106 10.2 +

10G 0 - )

CBaseline

-Aged 4 weeks @ IO0°C in Oil

105 I II I I
40 60 80 100 120 140 1-0 -

Temperature [°C]

Figure 9: Effect of Heat Aging and Oil Exposure on the

Properties of a Typical Material for 1000 Hz

109 --- 
16

1660 Hz

S10 10 04.

n U

1 (
100

Q) 
1

a))

0 
La

-2 (
t10 -

1

/ Baseline
- - - - Aged 8 hr @ 500°F

16 54 L_ _ _ I I i ---- I , I I , _ _. - 3

40 60 80 )00 120 140 166 0

Temperature [°C]

Figure 10: Effect of Heat Aging on the Properties of a

Typical Material for 1000 Hz

DBB-12



10~ 18

508Hz
- -5008Hz

--008Hz-

10 000+-
U

-

10
0 6a

U-)

15 (ai

0)

-80 -60 -40 -20 8 20 40 68 88 108 128

Temperature [0 C]

Figure 11: Variation of Material Properties with Temperature
f or Various Constant Frequencies
[Library J743 -Silicone Elastomer]

508Hz
0~~50 - Hz

0

10 0 r

0))

00

0 0)
4-) - '

M18

0

-108 -88 -68 -48 -28 8 28 48 60 80 1 60-

Temperature [ 0 C]

Figure 12: Variation of Material Properties with Temperature
for Various Constant Frequencies
[Library #351 - EPDM Elastomer]

DBB-13



110 0

50 Hz
C- 500 Hz

-- 50 000Hz

:310 4-)

0 o '

~~1) -to-I -

to
0

4-)2

10 r0 -

0

to 
0-3

-100 -80 -60 -40 -20 0 20 40 60 80 10

Temperature [0 C]

Figure 13: Variation of Material Properties with Temperature
for Various Constant Frequencies
[Library #496 -Butyl Elastomeri

10 9 = 10

N 50 Hz
- - 500 Hz

a_--500 Hz

'410 +
U

to 7 
LL.

~0

10 10
0) 

.~

(D

U-)

10~ 4.1 j 1 1-
-00 -60 -40 -20 0 20 40 60 80 100 12

Temperature [0C]
Figure 14: Variation of Material Properties with Temperature

for Various Constant Frequencies
[Library #519 - Polyphosphazene Elastouer]

DBB-14



1818 1081

50 Hz
-0 - 8Hz

to 9 5888 Hz

18 LL.

10? 10

10 4-

rd 5

C-n

10-88 -68 -40 -20 8 20 48 68 88 188 120 140 168 low

Temperature [0C]

Figure 15: Variation of Material Properties with Temperature
for Various Constant Frequencies
[Library #766 -Silicone Pressure Sensitive Adh. I

18 9 181

r-1 50H

50 H

n 5000 Hz
~0

o 1

t- 0

Lo 18

4->4-
L n 

2

-

-2 -18 -80 -68 -48 -28 8 28 480 6

Temperature [OCI

Figure 16: Variation of the Dynamaic Material Properties with
Temperature for the Indicated Constant Frequencies
[Library #14 - Rubber Base PSAJ

DBB-15



100 Hz

1~ 500 Hz
n'- to2

10

-104

o 10
0--- . U1

18~ 0

S5

ra 4

1150 IN8 19O 210 230 250 270 290 318 330 35ho

Temperature [0C]

Figure 17: Variation of the Dynamic Material Properties with

Temperature for the Indicated Constant Frequencies

[Library #380 -Polyetherimide Plastic]

50 Hz

r---508 Hz

0 0
L)

-~LA-

0

0

r~ a

0

cnf -2 a)

~6 Ka

Cflu 0X

140 60 80 188 120 140 160 180 200 2260

Temperature £0C1

Figure 18: Variation of the Dynamic Material Properties with

Temperature for the Indicated Constant Frequencies
[Lib:ar-y #181 - Plexiglass Plastic]

DBB-16



1 0 _10 11

50 Hz
- - - 508 Hz

C-----588 HzLJ 
9  L

10

(A8 L,882U

0 (A

0
0)1 7  Z- 1o-  .

--o .----

La z

0 -a

4') 116 8

(A

'-26'26 4 66 6 1260128 l b

W18 1

58H

o

rd--56-H

18--4- -20 0 20 40 0 so 1 120 14

Temperature [C]

Figure 19: Variation of the Dynamic Material Properties with

Temperature for the Indicated Constant Frequencies

[Library #717 Foam]

50 Hz
r--- - 500 Hz

C _ 109 500 Hz

LJ L
100 +J

10B

z.L.

( 6 
10 -

L-~ rd *.

0 6

00ra )
105

L 0 '60 -3

2r 16_ N+N

m N t I I l t l 18-3 Q

1 -40 -20 0 20 40 60 B0 100 120 14

Temperature [°C]

Figure 20: Variation of the Dynamic Material Properties with

Temperature for the Indicated Constant Frequencies
[Library #674 - Foam]

DBB- 17



to0I1 10'

to ~50 H-

M- 500 Hz

1-0 5000 Hz
10L

~10 0
10 4-

3 U -

10

c

0

106 L_________________________1____________ -3
-40 -20 0 20 40 60 80 100 120 1460

Temperature [0 C]
Figure 21: Variation of the Dynamic Material Properties with

Temperature for the Indiicated Constant Frequencies
[Library # 543 -Sprayable Free Layer Damping System]

101= 101

r- 50 Hz
- - 500 HzI

L

0 o ,0
0)0

L 0_

(-n

C,, -> 102 '

0

[0 6 O
-60 -40 -20 0 20 40 60 q0 100 120

Temperature [ 0 C]
Figure 22: Variation of the Dynamic Material Properties with

Temi~erature for the Indicated Constant Frequencies
(Library #630 - Sprayable Free Layer Damping System]

DBB- 18



181 101

50 Hz
50 - 8Hza_ 5080 Hz_

188L
80

00

a) 0- C

L 108

U) 
-02 Q)

/1 4-)

17 /
acn

0

10 
6  

I I3I
-40 -20 0 20 48 60 88 100 1A0

Temperature [0C]
Figure 23: Variation of the Dynamic Material Properties with

Temperature for the Indicated Constant Frequencies
[Library #279 -Commercial Add-On Surface Treatment]

10811 181

'V5 5Hz
50 - 8Hz

W 80
10

LI_

a))

U)~

-0

-40 -28 0 28 48 68 90 18 1

Temperature [0 C1
Figure 24: Variation of the Dynamic Material Properties with

Temperature for the Indicated Constant Frequencies
[Library #278 - Comercial Add-On Surface Treatment]

DBB-19



1 0 I I I 1 I T - r , I l , I

Material 0
48  

r..tt-a

Material 48-0 /a 
/ / \ \

0/
4-)

10_2

- ///
111

10 3  L L 1 I e I i I I

-50 -25 0 25 50 7s 100 125 15C

Temperature [°CI
Figure 25: Loss Factor Properties of Various L-aminates

at 1000 Hz

[Library #480, #481, #4821

4J 181 1

5zH

~506 Hz
r- - 500g Hz

9 5000 Hz £I0

10 / /

/ m/o -

4 3

I ... iI .-- _ i I/" ii L ,I1 i i I I -

-80 -6g 2 -5 020 2 48 so 8 10 120 158

Temperature [PC]
Figure 26: Variation of the Dnamic Material Properties with

Temperature fo-- the Indicated Constant Frequencies
[Library #57 - Pressure Sensitive Foam Tape]

DBB--250



10 - 10,

50 Hz
ra - - - 500 Hz[(- - 5000 Hz

1- . 0 -  )

- - (U

oD / ,. __\2

10 10 +_

ra

CK 0

{0-2

105

L,"

(U //

4_ I ., I I I , I I I I , I 1 I 8 -

8O -60 -40 -20 0 20 40 60 80 100 120 140 160

Temperature I'G]

Figure 27: Variation of the Dynamic Material Properties with
Temperature for the Indicated Constant Frequencies

[Library #242 Pressure Sensitive Foam Tape]

- 10 "
0

L

_ 1 0 18 
.  -

-60 -40 -2 0 20 4 60

Temperature [°C]

Figure 28: Damping Properties of Typical Commercial

Foil Back Treatments

DBE- 21



1011 .... .. ..... . .... ... .

10L

05

... . .. 500 z
C L 10 0 - -- - 'q... 5 W H 7

2 0 ---.- -. ]. -I

-
G

/-I / / ---- I
o / / -1

0 -4
t-o

" 0 20 40 60 80 100 120 140 160 180 200 c

Temperature [°C]

Figure 29: Variation of the Dynamic Material Properties with
Temperature for the Indicated Constant Frequencies
[Library 1749 Polymeric Reinforcement System]

1011 
101

-50 Hz
500 Hz

1100 5000 Hz

C4 0 CD

1 l0 - -----._2-3 t

o -- 110D/ M
*) 18 / ."+0

U ,-- ,' ,,¢,_

7- 7 1r'

21-e-

0 20 40 a B 00 120 140 60 i50 ?2 0 U

Temperature [°C2

Figure 30: Variation of the Dynamic Material Properties with
Temperature for the Ilicated Constant Frequencies
[Library 1616 Polymeric Reinforcement System)



10 10 1

50 Hz
- - - 500 Hz

I o9 500 Hz-

0 0
1 7 .10 -)

U

o 18 /A

10 
10 -

0) 0

4-) 7

/3 I-2 .0 106

10

c-

10_ I I I I I I I I

-100 -Be -60 -40 -20 0 20 40 60 e8 100 120 149

Temperature [°C]

Figure 31: Variation of the Dynamic Material Properties with
Temperature for the Indicated Constant Frequencies
[Library #513 Polysulfide Sealant]

1012 101
- 7 58 Hz
. - - 500 Hz
a -- 5 0 0 0 H z '

1011

-100
U

0

Q (A

Lo /0 l

-f-) 8o
2 Q

(Ato / 0 +.-)
a) //:~///

0

10 6 6 I
-
3

300 320 340 360 380 400 420 440 460 480 50

Temperature L0 C1

Figure 32: Variation of the Dynamic Material Properties with
Temperature for the Indicated Constant Frequencies
[Library #2 - Glass Enamel]

DBB-23



10 _____________12__________________0___ 
a2

50 Hz

rdatI 500 Hz
CIL 1L

10

to 10

0 LI-

Ia (

0

/10 Z
: 1

0

5 -3

00o 850 900 950 M880 158 id

Temperature PC]

Figure 33: Variation of the Dynamic Material Properties with

Temperature for the Indicated Constant Frequencies

[ Library #843 C lass Enamel]

101 181

C-1 50Hz

18j ot -- 5008 Hz-

--3 (

0

-2 (

o- -0 5r - 3

DB--24



1010 10

50 Hz
-- - 500 Hza- I09s 5000 ..z

0 0t o
- - 108 --- -.

i / _ \ (1A _

to _o -

106 / _
!O /-2 Q)

/0 -

__cIna

4 * I I * I I I I :-18
-20 8 20 40 Go so 100 128 14V

Temperature [°C]
Figure 35: Variation of the Dynamic Material Properties with

Temperature for the Indicated Constant Frequencies
[Library #330 - Structural Adhesive Film]

1012 101

58 Hz
-500 Hz

0..0
' ' 5008Hz

1010181 1 L -

-- -,

o18
10-1 0

-2 (D
Lm 109

0 • 1-2 .'
A 108  

- '

-40 -28 0 28 40 60 s8 188 120 140 160 180

Temperature [C]
Figure 36: Variation of the Dynamic Material Properties with

Temperature for the Indicated Constant Frequencies
[Library #52 - Graphite Composite]

DBB-25



10 12 10 1

50 Hz
C- 500 Hz

5000 Hz
11L100

0 0

L-

-010

£0
101

to
0 tr

W4- o- 4-

0

10 
-

-40 -20 0 20 40 60 80 100 120 140 160 18

Temperature [0 C1

Figure 37: Variation of the Dynamic Material Properties with
Temperature for the Indicated Constant Frequencies
[Library #488 - PPS Plastic Composite]

DBB- 26



ESTABLISHING THE VALIDITY OF THE MASTER CURVE TECHNIQUE FOR
COMPLEX MODULUS DATA REDUCTION

S.O. OYADIJI and G.R. TOMLINSON

Dynamics and Control Research Group,
Department of Engineering,
University of Manchester,

Manchester, M13 9PL, U.K.
(061) 275 4437/8

ABSTRACT

The applicability of the master curve technique for the reduction of temperature- and
frequency-dependent complex modulus data to a set of "master" complex modulus curves,
which depend on only one variable, is validated for a polyisoprene rubber of shore
hardness 55. Using the direct stiffness method, complex Young's modulus data was
determined for a sample of the material over 2 narrow frequency bands of 2 octaves
each and a wide temperature range of -60C to 100C. Small temperature intervals of 2C
at low temperatures rising to 20C at high temperatures were used in the tests. This
resulted in two sets of "temperature-dominated" complex modulus data from which
smooth, continuous master curves were generated by the application of the master curve
technique. The procedure was repeated for a wider test frequency range of 2 decades,
the same temperature range but larger temperature increments of 10C at low
temperatures rising to 80C at high temperature. This resulted in a
"frequency-dominated" complex modulus data set from which master curves were again
obtained. It is shown that the master curves obtained from the three data sets correlate
quite well.
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1. I RODUCTION

The master curve technique is a well known tool for the reduction of temperature- and
frequency-dependent complex modulus data to a set of master curves of modulus and
loss factor which depend on a single variable called the reduced frequency or reduced
temperature [1-31. The technique, which is also called the method of reduced variables
or the temperature-frequency superposition principle, exploits the inverse relationship of
the dependence of complex modulus properties on temperature and frequency to produce
a dependence of these properties on a single parameter, the reduced frequency or the
reduced temperature, which combines the separate effects of frequency and temperature.
Thus complex modulus data obtained over narrow frequency ranges and a wide
temperature range, using a single test method, are reduced to sets of single curves of
modulus and loss factor which cover several decades of frequency at a specified reference
temperature. Similarly, using an appropriate test method or a combination of test
methods, complex modulus data can be obtained over a wide frequency range and a
small temperature-range or even at constant temperature. From this data, master curves
can be again obtained. If, for the material under consideration, the
temperature-frequency superposition principle is applicable then the two sets of master
curves will be identical.

The use of the master curve technique started on an empirical basis. Subsequently,
theoretical models were developed to correlate some of the experimental observations [I].
However, the development and application of the technique has tended to be more
empirically orientated. The shift function, which is used for the data reduction process,
was for a long time based on the William-Landel-Ferry (WLF) equation. Other forms
of shift functions based or the Arrhenius model, statistical method and iterative approach
are now in use [3, 4]. It is generally agreed that satisfactory data reduction depends on
the use of an appropriate shift function.

Whenever the method of reduced variables is applied, one is confronted by the question
of the uniqueness and validity of the generated master curves. Thus, it is often
desirable to employ other means to validate the master curves produced. The most
direct method of validation is to measure the complex modulus properties at a single
temperature, e.g. room temperature, and over a very wide frequency range using a
variety of test methods such as stress relaxation, direct stiffness, resonance and ultrasonic
methods. However, this is no usually possible as one is often restricted by resources, to
the use of one test method. Hence, a different approach is required.

The approach used in the present work for validating the master curve technique is
based on an experimental application of a result of the temperature-frequency
superposition or equivalence principle. If the principle holds for a given viscoelastic
material, then the master curves produced from complex modulus data obtained at
constant frequency and varying temperature should be identical to the master curves
generated from complex modulus data obtained at constant temperature and varying
frequency. The constant frequency data sets are said to be "temperature-dominated"
while the constant temperature data sets are said to be "frequency-dominated". Relaxing
these two extreme test conditions to become (i) narrow frequency band and many
temperature steps, and (ii) wide frequency band and few temperature steps, the sets of
complex modulus that will be obtained will still be relatively "temperature-dominated"
and "frequency-dominated" respectively. It is shown that for the polyisoprene rubber
investigated, the master curves of complex Young's modulus obtained from the
temperature-dominated and frequency-dominated data sets are quite similar. The
experimental test method employed is the direct stiffness technique.

DBC-2



2. EXPERIMENTAL DETERMINATION OF COMPLEX YOUNG'S MODULUS

2.1 Direct Stiffnews Test Method

The direct stiffness method, which is a forced vibration, non-resonance technique for the
determination of the complex Young's or shear modulus of polymeric materials [5-71,
was used to determine the complex Young's modulus of the polyisoprene rubber
investigated. Two samples of the material of 30 mm diameter by 5 mm and 30 mm
thick were prepared and bonded to metal discs. Each sample assembly was placed in
turn, between the vibration table of an electrodynamic exciter and a rigid termination of
theoretically infinite impedance as shown in Figure 1 which also shows the associated
measurement and control instrumentation for the experimental tests. The end of the
sample connected to the exciter was subjected to controlled sinusoidal displacement
excitations of the form x(t) = XeJwt. The ratio of the output force f(t) = F*eiwt to the
input displacement gave the complex dynamic axial stiffness k* at the excitation
frequency o. The magnitude k, phase (loss) angle 0, and loss factor q are related to
k*by

k- Jk* I jF*/Xj
0 - k*- (F*/X) (1)
I - tan 9

Thus, the complex dynamic axial stiffness of the sample can be represented as

k* - k* + jk" - k'(1 + ji') (2)

k - Ik* - k'(l +

2.2 Derivation of Complex Young's Modulus

Due to the restraints imposed on the bonded ends of a sample, subjected to
tension-compression deformation, multiplying the complex stiffness k* by the factor LJA,
where L is length and A is cross-sectional area of a prismatic sample gives an apparent
complex Young's modulus, E*. The true and apparent magnitudes E and Ea of the
true and apparent complex Young's moduli are related by [2,8]

Ea - E(1 + S 2 ) ; Ea - kL/A (3)

where 0 is a numerical constant which has values of 1.5 4 j 4 2.0 that depend on the
filler content of the elastomer, and S is a shape factor defined as,

S - D/4L (4)

for a solid cylindrical element of diameter D and length L.

Tbus, the true complex Young's modulus E* is related to the measured complex
extensional stiffness k* by

E*- E*/(l + 3S2) - k*L/(1 + PS
2)A (5)
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where

E - IE*I - kL/(1 + BS2)A (6)

Tr -V

3. COMPLEX YOUNG'S MODULUS DATA AND MASTER CURVES.

Using the procedures described above, the complex Young's modulus of the polyisoprene
rubber was determined under three test frequency conditions, namely;

(1) Narrow band, low frequency tests (10 to 40 Hz)
(2) Narrow band, intermediate frequency tests (100 to 400 Hz)
(3) Wide frequency band tests (10 to 1000 Hz)

The complex Young's modulus data obtained under these test conditions and the resultant
master curves are described in the following. In reducing the data to master curves, the
modulus data was firstly shifted vertically using the relation

Er - (Tr/T)E (7)

where E is the Young's modulus at experimental temperature T, Er is the reduced
Young's modulus at the reference temperature Tr, and density variations are assumed to
be negligible. The shift factors used were of the general form

logotT - (T - Tr) (8)

where the forms of the function o were determined directly from the measured data.

3.1 Narrow Band, Low Frequency Data

For the narrow band, low frequency tests, the experimental frequency was from 10 to
40 Hz, that is 2 octaves, while the temperature range was from -60C to 100C. The
temperature steps were 2C between -60C and -30C, about 3C between -30C and -10C,
10C between -10C and 20C, and 20C for test temperatures between 20C and 100C.
This resulted in 30 test temperatures. The number of frequency points was 6 per data
set. Thus, the total number of Young's modulus and loss factor pairs of data obtained
was 180 as shown in Table 1. These data sets are certainly "temperature-dominated".
Figure 2 shows the wicket plot of log (loss factor) versus log (modulus) for the data.
The low temperature (below -50C) data seems to be subject to relatively higher random
errors whereas the high temperature data (above 20C) seems to be affected by some
systematic effects. Using the master curve technique, in its general empirical form,
master curves of Young's modulus and loss factor were produced from this data at a
reference temperature of -40C. The shift function used for the data reduction process is
shown in Figure 3. It was estimated numerically from the data using a computerized
data shifting process. The resultant master curves are shown in Figure 4. It can be
seen that the data scatter is low but it is significant for the loss factor curve at low
temperatures.
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3.2 Narrow Band, Intermediate Frequency Data

The test conditions for this case are quite similar to those of the previous case. The
only difference is that the frequencies are ten times higher than those of the narrow
band, low frequency data. Thus, the frequency range for the narrow band, intermediate
trequen%:y tests is lUO to 400 Hz (2 uctaves) with unequai 'icquency int-temcitts icbl ;ag
in a total of 6 frequency points per data set. The test temperatures and temperature
steps are excactly identical to those of the previous case. Thus, 180 pairs of
temperature-dominated data were again obtained as shown in Table 2. The wicket plot
of the data is shown in Figure 5. It can be seen that the data scatter is generally
small being higher for temperatures greater than 40C. By repeated data shifting process
a "best" estimate of the shift factor curve was obtained at a reference temperature of
-40C as shown in Figure 6. Using this curve the complex Young's modulis data was
reduced to master curves as shown in Figure 7. It can be seen that the data scatter is
quite small being relatively more pronounced for the loss factor data at higher
temperatures.

3.3 Wide Frequency Band Data

The frequency range of the wide frequency band tests was wider than the previous cases
being from 10 to 1000 Hz (2 decades). The frequency steps were about 12 per decade
giving 23 frequency steps in total. The temperature range used for the tests was again
from -60C to 100C but the temperature steps were higher being -10C at very low
temperatures and rising to 80(C at high temperature. The number of test temperatures
used was 6. Thus, the total number of pairs of data was 138 as shown in Table 3.
These data sets are relatively more "frequency-dominated" than in the previous cases.
Figure 8 shows the wicket plot for these data sets. It can be seen that the data scatter
due to random errors is small. However the 100C data set seems to be subjected to
some systematic errors as it is somewhat removed from the general body of data. By
means of the master curve technique, the data was reduced to master curves of Young's
modulus and loss factor at a reference temperature of -40C. The shift factor curve
used for the data reduction is shown in Figure 9. The master curves obtained are
shown in Figure 10. It can be seen that random data scatter is small but there may be
some systematic errors with the high temperature (low reduced frequency) data.

3.4 Comparison of Master Curves

The three sets of master curves of complex Young's modulus obtained are compared with
one another as shown in Figure 11. Except for some slight discrepancies which occur in
the loss factor master curves as high reduced frequencies, it can be seen that the master
curves correlate reasonably well within the limits of data measurement and processing
errors. This implies that whether temperature-dominated or frequency-dominated data is
used, the master curves generated will be very similar and unique. Thus, it can be
concluded that the temperature-frequency superposition is valid for the reduct:.n of
temperature-and frequency-dependent complex modulus data of polyisoprene rubber to
master curves.
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4. CONCLUSIONS

The master curve methodology is valid for the reduction of complex modulus data to
master curves provided the material under consideration is thermorheologically simple. It
has been demonstrated that the application of the master curve technique for the
reduction of complex Young's modulus data of the polyisoprene rubber investigated is
valid. Thus, it can be inferred that this material is thermorheologically simple. When
it is incertain whether a material is thermorheologically simple, such a validity test, as
demonstrateJ in this paper, might prove useful.
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INTEGRATED OPTIMIZATION OF COMPOSITE STRUCTURES
FOR ADVANCED DAMPED DYNAMIC CHARACTERISTICS

D. A. Saravanos'
Case Western Reserve University

and
C. C. Chamis

NASA-Lewis Research Center

ABSTRACT

Polymer matrix composites exhibit significantly higher material damping compared to
most common metals. The current paper summarizes recent research on the develop-
ment of design methodologies for optimizing the damping and the damped dynamic
performance of composite structures. The optimal tailoring involves multiple materi-
al/structural levels, that is, the micromechanics level (fiber/matrix properties, fiber volume
ratio), laminate level (ply angles/thicknesses, stacking sequence), and structural level
(structural geometry and shape). The dynamic response and the modal damping ot the
composite structure are simulated with finite element analysis based on a special
composite element. A multi-objective constrained optimization scheme is proposed for
the best handling of the many competing design criteria involved. Applications on basic
structural components (beams and plates) demonstrate that properly tailored composite
structures can exhibit significantly improved damped dynamic performance.

Keywords: damping; composite materials; composite structures; optimization; design;
dynamic performance.

Structures Division, Lewis Research Center, MS 49-8,
21000 Brookpark Rd., Cleveland, OH 44135; (216) 433-8466.

DCA-1



INTRODUCTION

Fiber composite materials are widely used in structural applications requiring high
stiffness-to-weight and strength-to-weight ratios, as they readily provide high specific
moduli, high specific strengths, and tailorable anisotropic elastic properties. Polymer
matrix composites may also exhibit significantly higher damping compared to most
common metals. The previously stated requirements for advanced light-weight structures
virtually restrict the use of many traditional sources of passive damping, therefore, the
option to utilize the damping capacity of polymer-matrix composites appears very
attractive. Reported research on the damping of unidirectional composites and laminates
[1-61 has shown that the damping of composites is highly-tailorable and is primarily
controlled by constituent parameters (fiber/matrix properties, fiber volume ratio), and
laminate parameters (ply angles/thicknesses, stacking sequence). Additional research
work [71 demonstrated that the modal damping of composite structures depends also on
the structural geometry and deformation (mode shapes). This work also suggested that
properly designed composite structures can provide significant passive damping, and they
may further improve the dynamic performance and fatigue endurance by attenuating
undesirable elasto-dynamic phenomena such as structural resonances, overshooting, and
long settling times. The previous studies have also demonstrated that any increase in
damping typically results in decreased stiffness and strength, therefore, any tailoring of
the composite material for optimal damped response will be based on trade-offs
between damping, stiffness, and strength.

Although the optimization of composite structures for multiple design criteria including
damping appears to be worthwhile and its significance has been acknowledged [8],
reported research on the subject has been mostly limited to the laminate level [9,10].
Resent research performed by the authors has been focused on the optimal tailoring of
composite structures for optimal transient or forced dynamic response [11-13]. This work
is summarized herein and involves methodologies for the optimal design of polymer
matrix composite structures. The methods are equally applicable to structures subject in
steady or transient response, and they further entail: (1) multiple objectives to effectively
represent the array of competing design requirements; (2) capability for tailoring of the
basic composite materials and/or laminate; (3) capability for concurrent shape optimiza-
tion; and (4) design criteria based on the global static and dynamic response of the
composite structure.

The proposed design objectives are minimization of resonance amplitudes (or maximiza-
tion of structural damping), minimization of structural weight, and minimization of
material cost. Additional performance constraints are imposed on static deflections,
dynamic resonance amplitudes, natural frequencies, static ply stresses, and dynamic pl
stresses. The analysis involves unified composite mechanics, which entail micromechanics,
laminate and structural mechanics theories for the passive damping and other mechanical
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properties of the composite. The structural damping and the damped dynamic response
are simulated with finite element analysis. Applications of the methodology on the
optimization of a cantilever composite beams and a cantilever composite plate are
presented. The results quantify the importance of structural damping in improving the
dynamic performance of composite structures, and illustrate the effectiveness of the
proposed design methodology.

DAMPED STRUCTURAL DYNAMIC RESPONSE

To enable the design of general composite structures, a finite element discretization is
utilized. In such case, the dynamic response of a structure which is excited by a force
P(t) is expressed by the following system of dynamic equations:

[Miai +[C]14', +[K]Iuj =IP(t)j (1)

where {u} is the discretized displacement vector. In the case of laminated composite
structures, the stiffness, damping, and mass matrices, [K], [C], and [M] respectively, are
synthesized utilizing micromechanics, laminate, and structural mechanics theories
representing the various material and structural scales in the composite structure.

The related theories for this multi-level simulation of structural composite damping are
described in refs. 1,2, and 7. Analogous theories are utilized for the synthesis of other
mechanical properties [14]. At the micromechanics level, the on-axis damping capacities
of the basic composite material systems are calculated based on constituent properties,
material microstructure, fiber volume ratio (FVR), temperature, and moisture. The
off-axis damping capacities of the composite plies are calculated at the laminate level,
and the local laminate damping matrices are predicted based on on-axis damping values,
piy tHicknesses, and iaminate configuration. The damping contributions of the interlam-
inar matrix layers due to in-plane interlaminar shear are also incorporated [2].

The structural modal damping is synthesized by integrating the local laminate damping
contributions over the structural volume. The modal specific damping capacity (SDC) of
the n-th vibration mode ,, is:

fAA WdA(2

where: A is the structural area; AWL, and WL , are the dissipated and maximum stored
laminate strain energy distributions, respectively, of the n-th mode per unit area per
cycle. Utilizing the finite element discretization scheme proposed in ref. 7, the modal

DCA-3



SDC is related to the element damping and stiffness matrices, [C] and [Kel respective-
ly:

1Ivl

2 =1 (3)

E I TuiK I- i-I 
IUn 

[~ ]{ ,,

where, nel is the total number of elements and {ui,} the nodal displacements of the i-th
element corresponding to the n-th vibration mode.

The dynamic response of the structure is simulated based on modal superposition. The
dynamic system in eq. (1) is transferred to the p x p modal space via the linear modal
transformation {u} = [el{q}. Assuming proportional damping, then the damping matrix
is synthesized from the modal damping values. The frequency response (FRF) of the
structure, or the transient dynamic response is subsequently calculated. Typically the
resonance amplitudes, or the undamped amplitudes in transient response of most critical
vibration modes are used as performance measures.

OPTIMAL DESIGN

Originally, the optimal design of composite structures was conceived as a single-objective
constrained optimization problem [11,12]. Although this research demonstrated the
advantages of damping tailoring, it indicated that the design of composite structures for
optimal dynamic performance is a multi-objective task, and may be best accomplished as
the constrained minimization of multiple objective functions. Increases in composite
damping may typically result in stiffness/strength reductions and/or mass addition, for this
reason, the minimization of weight and material cost was also included in the objectives.
The material cost is a crucial factor, restricting in many cases the use of composite
materials. Moreover, the distinction between weight minimization and material cost
minimization is also stressed, because fiber reinforced composites are nonhomogeneous
materials and the minimization of the weight does not also imply the minimization of the
material cost. Therefore, the multi-objective formulation is summarized herein, as the
more general case.

A constrained multi-objective problem involving minimization of I objective functions is
described in the fo,!owing mathematical form:

min ! F1(z),F 2 (z),...,F(z) } (4)

subject to lower and upper bounds on the design vector z and inequality constraints
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zL z zU (5)
G(z) 0 (6)

In the rest of the paper, upper and lower values are represented by superscripts L and U
respectively. Individual minimizations of each objective function subject to constraint set
(5,6) will result in a set of ideal solutions which define a target point F =(F,*, F27,..,

F,). A solution of the multi-objective problem is then obtained by finding a feasible
point {F}= (F1, ..., F) as closely as possible to the target point {F*}. This is achieved
by minimizing the following scaled objective function:

miIv (7)
a-!

subject to constraints (5,6). The weighting coefficients are represented with vi. Other
metrics or scaling procedures may be utilized in eq. (7), but in general, they are expected
to result in different solutions.

The design objectives typically include minimization of: (1) the maximum resonance
amplitude (min F,); (2) the total structural weight (min 12); and (3) the material cost
represented by the average cost of fibers (min F3). Alternatively, F, may represent the
maximization of select modal damping values. The explicit maximization of modal
damping may be preferred in the case of transient or a-prior; unknown dynamic excita-
tions. The fiber cost is used as a measure of the total material cost due to the high cost
of fibers compared to the cost of matrix. The design vector includes fiber volume ratios
(FVRs), ply angles, and shape parameters.

Performance constraints are imposed on static deflections us,

u'l S {usIJI (8)

dynamic amplitudes,

fUdI IUdUl (9)

natural frequencies f,}

jfL_ I ! ,1 f VfU1 (10)

and the static and dynamic stresses of each ply c, in the form of the modified
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distortion energy criterion [14],

f(o, S) -1 O (11)

The constrained optimizations mentioned above are solved with the modified feasible

directions non-linear programming method [15,16]. The feasible directions algorithm

performs a direct search in the design space involving a series of iterations. In each

iteration, a search direction is calculated based on first order derivatives of the objective

function and active constraints. A line search is subsequently performed along the search

direction and a suboptimum along the search direction is calculated. The iterations are

repeated until convergence to a local optimum is achieved.

Y

'7k.

Fig. 1 Candidate composite structures. (a) Initial beam geometry; (b) Initial

plate gc(imctry: (c) lUiminate configuration. Dimensioifs are in inches.

I II I I I II J I)



APPLICATIONS

Selected evaluations on the method on the optimal tailoring of a cantilever graph-
ite/epoxy composite beam and a cantilever graphite/epoxy composite plate are presented
(Fig. 1). The assumed laminate configuration in both structures is symmetric consisting of
angle-ply sublaminates 1, 2, and 3 in each side. All sublaminates had plies of equal
thickness (0.01 in). The ply angles ei and FVRs k. of each sublaminate, and the thick-
nesses hj at 0%, 30%, 60%, and 100% (tip) of the span were optimized. The thickness at
other sections was interpolated using a cubic spline fit. A unidirectional ply configuration
was selected as the initial baseline composite design for both cases, because it provides
high axial bending rigidity.

Composite Beam in Impulsive Excitation: Typical improvements in the predicted impulse
response (y-axis) of an optimized composite beam design are shown in Fig. 2. In this
particular case, a single objective function was implemented, such that, the modal
damping corresponding to the mode with the higher undamped dynamic amplitude was
maximized [111. The optimization variables involved only composite parameters, that is,
FVRs and fiber orientation angles. The baseline and resultant optimum design is shown
in Table 1. Clearly, the free response of the optimized beam has been drastically im-
proved, although the undamped dynamic amplitude was increased.

Table 1. Optimum design for Composite Beam in Impulsive Excitation

Baseline Design Optimum Design

Ply Angles, (degrees)

0.0 30.24
02 0.0 30.49
03 0.0 29.76

Fiber volume ratios

kfH 0.50 0.69
k12 0.50 0.53
ki' 0.50 0.50

Multi-Objective Design of the Composite Beam in Forced Excitation: As a next applica-
tion, a case of optimal design of the composite beam, involving the three objective
functions mentioned above, is presented [13]. The assumed loading conditions involved a
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combination of uniform static transverse out-of plane (y-axis) forces (50 lbs/in) and
transverse out-of-plane harmonic forces (0.1 lbs/in amplitude) applied at the tip of the
beam. The design variables included both composite parameters (FVRs and ply angles)
and shape parameters kcross-sectioni lhik;k ieses). In addition to constraints (8) and
(11), constraints included upper bounds on the transverse static deflections at the free
end lower bounds on the first two natural frequencies, and upper bounds on the
transverse resonance amplitudes at the tip, for each of the first four modes.

Table 2. Multi-objective optimum designs: Composite beam

Baseline Single-Objective Designs Multi-Objective
min Fl min F2 min F3

Ply Angles, (degrees)

01 0.0 24.68 13.55 4.3G6 24.46
02 0.0 24.05 -41.19 41.150 53.53
03 0.0 -50.33 -65.56 44.863 90.00

Fiber volume ratios

kfl 0.50 0.637 0.630 0.294 0.512
kf2 0.50 0.700 0.021 0.010 0.010
ks 0.50 0.010 0.010 0.010 0.010

Table 2 also shows the baseline design, the three single-objective optimal designs (each
objective function individually optimized), and the resultant multi-objective optimal
design. All optimized designs have non-uniform thickness, being thicker at the proximal
end and thinner at the distal end. The apparent differences among the optimal shapes
demonstrate the significance of shape optimization. The relative improvements of each
objective function with respect to the baseline design are plotted in Fig. 3. As seen in
Fig. 3, the single-objective optimizations have failed to reduce all objective functions.
Only the multi-objective optimal design produced simultaneous improvements in all
design objectives.

The frequency response functions at the mid-point of the free-edge of the initial . nd
optimized beams are shown in Fig. 4. The multi-objective optimum design has a better
FRF than the minimum cost and minimum weight designs. This suggests that the
incorporation of composite damping was crucial in obtaining these significant improve-
ments in all objective functions illustrating, in this manner, the significance of composite
damping in the design of high dynamic performance, light-weight, and low-cost composite
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structures.

Multi-Objective Design of the Composite Plate in Forced Excitation: The optimization of
the composite plate involves additional structural complexity, therefore, the present
application provides additional insight in the optimal design composite structures [13]. In
this case, the loading conditions included combinations of a uniform static transverse out-
of-plane (y-axis) force (3.12 lbs/in) at the free end, a uniform transverse out-of-plane
harmonic force (0.0063 lbs/in amplitude) at the free end, and a harmonic moment
(0.0313 lb-in/in amplitude) also applied along the free-edge of the plate. Under this type
of dynamic loading, the maximum resonance amplitude at the tip typically occurs either
at the first mode (first out-of-plane bending in the baseline design) or at the second
mode (first torsion in the baseline design). Both composite parameters and shape
variables were optimized. In addition to constraints (8), and (11), constrains included
upper bounds on the transverse static deflections of the free-end, lower bounds on the
first four natural frequencies, and upper bounds on the transverse resonance amplitudes
of the free-end for the first four modes (Table 3).

Table 3 also presents the initial baseline design, the three single-objective optimal
designs, and the resultant multi-objective optimal design. The relative changes in the
objective function values with respect to the initial unidirectional plate are shown in Fig.
5. A strong tendency was observed in the optimum designs to result in "sandwich" type
laminate configurations with a constrained thick matrix core (sublaminates 2, 3) and
angle-ply composite skins (sublaminate 1) that provided stiffness and strength. The same
tendency was also observed with the beam design but was less predominant. This inter-
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esting result was the direct benefit of introducing unified micromechanics into the
analysis, and consequently, the FVRs into the design parameters. The optimal designs
varied drastically in optimal thickness shapes, ply angles, and FVRs, which demonstrated
the inherent tendency of composite structures to get overdesigned.

The resultant frequency response functions of the transverse y-axis deflection at the
foremost corner of the plate (x= 16 in, z=8 in), where the maximum dynamic deflection
was observed for almost all optimal designs, are plotted in Fig. 6. Interestingly, the
minimum weight design has the higher resonance amplitudes, even than the baseline
plate, illustrating the unsuitability of the minimum weight design for improving the
dynamic performance. As both case studies illustrated, optimal design methodologies
neglecting the damping capacity of composite materials and its controllable anisotropy
may lead to structures with inferior dynamic performance near the resonance regimes,
hence, they appear unsuitable for optimizing the dynamic performance of composite
structures.
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Table 3. Multi-objective optimum designs: Composite Plate

Baseline Single-Objective Designs Multi-Objective
min F1 min F2 min F3

Ply Angles, (degrees)

01 0.0 1 i.74 24.91 33.97 24.23
02 0.0 -83.10 50.38 68.88 49.92
03 0.0 -4.06 56.22 -47.84 -52.70

Fiber volume ratios

kfl 0.50 0.700 0.698 0.225 0.301
k 0.50 0.010 0.010 0.010 0.010
kn 0.50 0.010 0.010 0.010 0.010

SUMMARY

Research work at NASA-Lewis Research Center on the development of optimal design
methodologies for optimizing the damping of composite structures and their dynamic
performance was summarized The design methodologies provide the option of multiple
objective functions, and may tailor composite parameters at multiple scale levels of a
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composite structure. The structural dynamic analysis included the effects of composite
passive damping on the dynamic response of composite structures via integrated microm-
echanics, laminate, and structural damping theories. Performance constraints were
imposed on static displacements, static stresses, dynamic resonance amplitudes, natural
frequencies, and dynamic stresses. The described method has been integrated into an
in-house research code [16].

Basic application cases illustrating the optimal design of a cantilever composite beam and
a cantilever plate were reviewed. All cases illustrated that optimal tailoring may signifi-
cantly improve the damping capacity of composite structures and result in superio-
dynamic performance. It was also demonstrated that the damping capacity of composites
is an important factor in designing light-weight, low-cost composite structures of im-
proved dynamic performance. The multi-objective optimization was proved superior in
minimizing the competing requirements involved. The optimizations with single-objective
functions have shown a strong tendency to overdesign the structure and did not improve
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all objectives. The resultant optimal designs illustrated that both material (fiber orienta-
tion angles, fiber volume ratios) and shape parameters contributed to the obtained
improvements. Overall, the applications of the method appeared very encuuraging.
Additional studies on more complex structural configurations and dynamic excitations
may well worth the effort, therefore, are recommended as future research topics.
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An Optimum Design Methodology for Passively Damped Truss
Structures

R. A. Manning*
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ABSTRACT

Many of the complex space structures proposed for future space missions will utilize en-
hanced damping to meet stringent performance requirements. The enhanced damping is
necessary to prevent excessive slew/settle times, unacceptable jitter levels, and harmful con-
trols/structures interactions. There are currently no documented integrated design method-
ologies for designing damping into complex structures early in the design process.

In this paper, an optimum design methodology is presented for truss structures aug-
mented with constrained layer viscoelastically damped members. The methodology is pre-
sented as a two stage procedure. In the first stage, efficient locations for the passive members
are found heuristically, thus avoiding a computationally burdensome combinatoric optimiza-
tion problem. In the second stage, a formal optimization procedure is used to simultaneously
size both the truss members and the passive members. Values for the design variables at the
optimum design are found by solving a sequence of approximate problems. Each approxi-
mate problem is constructed using design sensitivity information in conjunction with first
order Taylor series expansions. The sizing-type design variables treated in the optimum de-
sign procedure are inert structural member cross sectional dimensions, passive member cross
sectional dimensions, passive member viscoelastic layer and constraining layer thicknesses.

The complex space structure design problem is posed as a nonlinear mathematical pro-
gramming problem in which an objective function critical to adequate mission performance
(e.g., line-of-sight errors or settling time following slew) is to be minimized. Limitations con-
sidered during the design procedure include an upper bound weight cap, dynamic response
constraints (which represent additional mission requirements), and side constraints on the
design variables.

" Staff Engineer

DCB-1



INTRODUCTION

Stringent performance goals for future space missions will require minimum levels of
"designed-in" damping. The necessary levels of damping can be added through either active
or passive means. Active damping requires sensors and actuators, a source of power, and a
compensator (control law) which gives good performance and remains stable i. the wake of
structural parameter uncertainty and change. Passive damping requires high loss -,-coelastic
or fluid materials and thermal control. For some space systems, the lack of adeq-tate power
margins and the potential for gross structural parameter perturbations suggest that passive
damping methods are the method of choice.

Recent developments in analysis and fabrication techniques have led to the consideration
of constrained layer viscoelastically damped members for vibration suppression. Bronowicki
et al. [1] derived a special purpose finite element for use in analyzing such members. In
addition, Reference 1 is notable for the fabrication and hardware verification of the pas-
sive members. Hedgepeth [21 derived simplified design equations for use with segmented
constraining layer VEM damped members. His results yielded expressions for the real and
complex stiffness of these menl, ; I when .. a, .-. ci 1 !y (i.e., when vsed a- tr,,_ members)
In order to utilize passive members on complex space structures, automated design proce-
dures are needed which employ these analysis methods.

The approach used in the current work was to start at the element level and develop
a design-oriented procedure for passively damped structures. Other approaches, Gibson
and Johnson [3], for example, have developed system level optimization capability utiliz-
ing a prepackaged finite element code such as NASTRAN in conjunction with the ADS [4]
optimizer. Because a prepackaged finite element code was used, the viscoelastic damping
treatment had to be modeled using standard elements, such as the QUAD4, HEXA, and/or
PENTA elements, and sensitivities had to be computed numerically. Starting at the ele-
ment level allows the calculation of element design sensitivities in closed form for use with
gradient-based optimization packages. The closed form e'ement level sensitivities avoids
the computational intensity of finite difference-based sensitivity information. Furthermore.
the availability of inexpensive and accurate gradients gives credence to the construction of
high quality approximations for use during the optimization procedure. These high quality
approximations, in conjunction with a suitable nonlinear mathematical programming proce-
dure, allows many optimum design problems to be solved in relatively few complete dynamic
analyses.

In the current study, the design problem is posed as a combinatoric optimization problem
in which passive member placement, inert member cross sectional dimensions, and passive
rnerribcr cross sectional dimensions are treated simultaneously as design variables. By de-
signing the inert and passive members simultaneously, strain energy can be funneled into the
pa-ssive members, thus yielding suitable levels of damping. The design optimization proce-
dure is applied to a problem where purely mass and stiffness redistribution has little chance
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for success due to the broadband nature of the disturbance.

OPTIMUM DESIGN PROBLEM STATEMENT

The optimum design problem used for this work is

min LOS(d, t) (1)

subject to
g(d,t) 0 (2)

along with the side constraints
d' < d < d- (3)

where it is understood that d is the vector of design variables for the inert truss members
and the passive members.

The design problem stated in equations (1) through (3) corresponds to a spacecraft
design problem where maximum performance is obtained by minimizing a single specified
performance index, such as a line-of-sight (LOS) pointing error. Other restrictions on the
performance of the spacecraft, such as an upper bound mass cap, limits on the travel of
key optical or sensor components, limits on the loads induced in fragile sensor/eler:trical as-
semblies, and dynamic stability margins for controlled structures, are specified as additional
constraints, g.

Figure 1 contains schematics of the inert truss design elements and the passive member
design elements. For the inert truss design elements, the inside diameter and wall thickness of
the member are the design variables whereas the reciprocal of the cross sectional area is used
as the optimization variables. For the passive members, the design variables are the inside
diameter of the base tube and it's wall thickness, the thickness of the viscoelastic material,
and the thickness of the constraining layer. Optimization variables for the passive members
are the reciprocal of the area of the tube, the viscoelastic material, and the constraining
layer. A 100% mass penalty was applied to each passive member to account for thermal
control hardware.

The system optimization problem posed in equations (1) through (3) is an implicit com-
binatoric optimization problem. The task of placing the passive members on the structure
for maximum effectiveness gives rise to the combinatoric nature of the problem. Further-
more, both the objective function and the constraints are complicated implicit functions of
the design variables. A limited number of solution methods exist for this class of problems.
all of which are compu'lationally burdensome.
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SOLUTION METHODOLOGY

An alternative solution me-thodology is to separate the combinatoric and] Implicit aspects
of the problem and attack each subproblemn individually. A flow diagramn for such a pr0ce_
dure is shown in Figure 2. Placing the passive members at efficient locations onk 0he stru tun'
involves solving a heuristic subproblern. One solution to the heuristic subproblemi is to place-
the passive members in regions of high strain energy for the modes that are to he daiiped.
Optimum values for the design variables are then found using a formal optimization1 prmocc-
dure with the locations of the passive members fixed. The formal sutbprobl1ein replaces, the
implicit problem posed in equittions (1) through (3) with the explicit approximate problemu

min LOS(d, t) 4

subje ct to 
dt < 0

along wt wh sidc istrnt

d' <- d < dui(6

Owere b~oth the objective function and the constraints have been replaced by the erxplicit
lIc'1I'r d 6] first order 'L'avlor- seiles. LVS and g rr-pectively.

"I1 oif the ilii optiinummi design problem posedl inl equations()thog )
p. (l mce'( oIf heuristic and formal subpn 'blems,. 1 ach formal subproblf'ull
vo ' olving a sequ en -[ce Of approximate problems (stated in eqIuations (4) th rou gh (6)).

A Diet (irial (les( ri ption of the_ complefe solution sequence to the original optimumIII designl
prob (-ri Is shiown in Figre 2.

'SYSTPEM,,, DESCRIPTION

I h .t lra! v,~v~cu~in of mnotion for the class of problems dealt with hem e,
lir 'Vt u- iri !': 11 ;tir~ted with p ass Ive members, c:an be wr-itten ws

KIX + '. K,) Z =R T

I1 I, jj .. 1 1, 1i, Lads., Al is t he i u;,ma,; ~ I; t , ihert '

':j.1 tt* oip' cul ti i')f t ~ 11

1A AX -. PR '



where the system plant matrix is given by

A [0 2 1  (10)A= -W 2 _OpTKp 0

the state X is the vector of stacked modal displacements and velocities

X = (11)

and the input matrix is

B=[OR] (12)

The M and K matrices are computed for the truss elements in the usual finite element
manner. The K, and Kp matrices are computed for the segmented constrained layer passive
members using the analysis methodology presented in Reference 2. The effective stiffness of
the passive member can be written in terms of the stiffness of the tube wall, k,, and the
stiffness of the constraining layer, k,, as

k, + k, (13)
ef = - 1 + , tan1(D)

kw D

The D parameter is related to the shear lag length r by

1
D = 2 1r(14)2r

The shear lag length, which is used for determining the lengths of the segments of the
constraining layer, is given by

Ectct.em 1 (15)

Gjm + E~f-

where G,,m is the complex shear stiffness of the VEM. Sensitivity information at the element
level is found by taking the deriva " ,e of the effective stiffness of the passive member with
respect to the design variables.

Solution of equation (9) for the system response due to external loads is accomplished
by computing the complex modes of the system plant A and solving the resulting uncoupled
equations in the frequency domain.
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EXAMPLE PROBLEM

The structure shown in Figure 3 will be used to demonstrate the benefits of the previously-
described optimization procedure. The structure is a scaled version of a proposed Space
Based Interferometer [7]. Two 13 meter arms run out from the sides of the interferometer and
hold light-collecting telescopes at the tips. The 11 meter tower contains a telescope running
down its center while laser metrology equipment is mounted at the end of an additional
11 meter truss. In an undeformed, perfectly-aligned -tate, the two 13 meter arms give an
optical path length (baseline) of 26 meters.

Dynamic distrubances from the attitude control system reaction wheels are fed into the
structure at the central bay. The interferometer can acquire data when the relative alignment
(tip and tilt) of the collecting telescopes is less than 8/Irad and the optical path length does
not substantially deviate from 26 meters. Therefore the design optimization problem is to
minimize path length deviations from 26 meters while maintaining relative tiF and tilt of
the collecting telescopes within 8prad. An upper bound mass cap of 252 kg is also imposed
on the system. This cap corresponds to the preliminary design mass of the completely inert
system (without passive member augmentation).

The purely inert preliminary design of the SBI was used as the point of departure for
the optimum design procedure. The performance of the interferometer at the preliminary
design is shown in Figure 4. Unacceptable optical lengths and relative tip and tilt motion
of the collecting telescopes exceeding 8purad were obtained. The modes at 4.4, 16.4, 19.0,
27.7, and 36.9 Hz needed damping augmentation to achieve the performance goals. It should
be noted that purely structural methods (i.e., mass and stiffness redistribution) are doomed
to failure in this case because of the wide band disturbance and the stringent performance
levels required. Locations for the passive members were determined by examining regions
of high strain energy for the modes which needed damping augmentation. This, in effect.
results in a solution to the heuristic placement subproblem. A total of 56 passive members
were added to the system.

The performance of the interferometer following optimization is shown in Figure 4. Opti-
ca! length deviations have been reduced from 3.16 pm to 0.11 /im while bringing the relative,
tip and tilt motion of the collecting telescopes down to acceptable levels. The peak tip and
tilt motions at the optimum design are 7.5 1 irad and 7.8 jirad, respectively, having been
reduced from 27.7 prad and 48.3 jrad at the initial design. A comparison of damping levels
at the intial design and the optimum design for each of the modes below 40 Hz are shown
in Table 1. Though a large number of passive members were added, the design optimization
proccedure managed to meet the mass cap of 252 kgs and reduce the interferonieter baselin,
by a ftrtor of 28.7
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Table 1: Initial and Optimum Frequencies and Damping Ratios
Initial Design Optimum Design

Mode Number Frequency (Hz ((%) Frequency (Hz) ((%)
1-6 0.0 0.0 0.0 0.0

7 4.4 0.2 4.1 4.7
8 6.5 0.2 6.1 3.9
9 7.2 0.2 6.8 9.O

10 8.4 0.2 7.9 4.5
11 8.5 0.2 7.9 3.4
12 12.9 0.2 12.0 3.7
13 16.4 0.2 14.8 4.1
14 19.0 0.2 17.3 2.9
15 19.2 0.2 17.8 3.2
16 21.7 0.2 20.6 0.6
17 24.5 0.2 22.0 3.9
18 27.7 0.2 24.6 5.3
19 29.1 0.2 26.9 3.1
20 36.9 0.2 33.6 4.6

CONCLUDING REMARKS

An integrated inert truss/passive truss member design optimization methodology has
been developed. The methodology treats both structural design variables and passive mem-
ber design variables simultaneously in the optimization procedure. By employing a two stage
heuristic/formal subproblem solution procedure, the computational burden associated with
placing the passive members on the structure is avoided. A solution for the implicit for-
mal subproblem is found in relatively few complete dynamic analyses by solving an explicit
approximate problem. Design sensitivity information was efficiently computed by differenti-
ating a closed form expression for the complex stiffness of the passive members. The design
optimizaion procedure is a mission-enabling technoiogy for future space miiissions with ex-
tremely stringent dynamic performance requirements where purely structural solutions fail.
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ON AN APPLICATION OF COMPLEX DAMPING
COEFFICIENTS
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ABSTRACT

Complex damping theory is a useful tool in analysis of energy

transformations among modes of a vibration system. Based on this theory,

there are many applications and Improvements in the areas of system

identification, vibration control and damper optimization design.

This paper presents an application of the theory in regard to finite

element model corrections. First, a common shortfall of usual correction

procedures is analyzed. In order to deal with this problem, a correct

correspondence rule is then proposed. With the help of complex damping

coefficients, improvements to certain correction procedures are discussed.
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INTRODUCTION

The dynamic performance of a structure may be characterized by different

mathematical models. Among them, the modal model and the physical model

are most frequently seen. A modal model which consists of a set of modal

parameters is often used In harmonic-related vibration control, In dynamic

behavior analysis, and in physical model modification. Since a modal model

is essentially a dynamic representation of the physical model in the modal

domain. The transformation of physical coordinates into modal coordinates

is always accompanied by a certain loss of information, a modal model is

generally considered to be a weak model but relatively easy to obtain.

A physical model consists of three coefficient matrices: The mass,

damping and stiffness matrices. If such a model is known, all the modal

parameters can be calculated. Conversely, a physical model can not be

determined in general from a modal model. In this regard, a physical model

is considered superior than a modal model.

In engineering practice, a physical model is not always available because

not all the coefficient matrices can be directly measured. The measurable

quantities are often the various dynamic responses and modal parameters of

the structural system. Based on these data, we can typically generate an

approximate model - an analytical model, using the finite element method

(FEM). In most cases, the analytical model is inaccurate and requires

various adjustments or corrections. In the past decades, many attempts

have been made to develop better algorithms to modify the FEM models. At

present, the need to develop appropriate algorithms continues to exist.

From the analytical model to the physical model, an important step is to

perform model corrections. In a general model correction procedure, the

goal is to obtain a set of coefficient matrices, mass M, damping C and

stiffness K. 'What we have at the beginning is the analytical model data

M(a, C a and K along with some dynamic parameters of the physical

model, such as measured response X and/or modal parameters: Undamped

(n (m) ( M)
natural frequencies Q damping ratios and mode shapes p In
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each step of the corrections, we obtain certain corresponding matrices
(1) (1)(1)

M , C and K as approximations to the real M, C and K. Then we

typically compare the measured response X and/or modal parameters Q

and P(), with the calculated response X( , and/or modal parameters

Q , 'V an(: PC( from the revised analytical model. If the discrepancy

between the two sets of data is less than a certain preset level, then the

revised analytical model is accepted as the physical model. Otherwise, the

correction procedure is continued.

In such a correction procedure described above, a number of factors can

influence the final result. There are many existing algorithms that do not

converge in general. For those that converge may have problems in

targeting the correct M, C and K because the comparison criterion used is

not sufficiently comprehensive.

In this paper, we propose an alternative Judgment on the effectiveness of

model corrections. Our discussions will be restricted to finite element

models and their corrections under the assumption that the models are

linear, time-invariant and have lumped-masses.

RESPONSE-Fl TTING

One of the simplest model correction methods is the time domain response-

fitting. In order to carry-out this method, a time history (or transfer

function) of the testing structure must first be recorded. The time

history can be a free decay response with an initial input such as sine-

burst, white noise-burst, impulse, etc. Or it can be a forced response

under an excitation such as sinusoidal, sine-sweep, sine-dwell, pseudo

white-noise or simulated seismic ground motion. In a carefully conducted

experiment, the measured response is considered "noise-free". Thus it is

ready to be used as the correction reference. Once the reference is

available, corresponding samples are collected from a calculated response

of the analytical model with same initial phases and time intervals. Then

by using certain mathematical techniques such as the least-square method

or the maximum-likelihood method, a cost function Is generated to measure

the discrepancy between the two responses. Equation (1) gives a least-
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square cost function (Natke, 1988).
p n) (a) 2

j= E E x (1)
1=1 J=1 iJ j Ij

(in) (a) th
where, x and x are the I samples of measured and calculated

ij ij

responses from the jth node respectively. The total number of samples from

each source is p and the number of nodes is n. a are weightedIi

coefficients. In general, at certain nodes, samples are measured more

accurately than at other places, the weighted coefficients of these

samples will then be assigned with greater values. Conversely, the tail

of a free decay response is thought to have poor signal-to-noise ratio,

the weighted coefficients of samples from this portion will be assigned

with smaller values.

The value of J indicates whether the analytical model is close to the

physical model. When the response of the analytical model does not fit the

response of the structural system, J will assume a large value. Corrections

to the analytical model will then be made to reduce the value of J.

Due to several reasons, response-fitting is often considered unsatisfactory

in terms of its model correction effect. First, when a given excitation

with a nearly straight spectium, the structural response should

theoretically incorporate the influences of all modes of the structural

system. However, lower modes are usually associated with large percentage

of the total energy involved, these modes have dominate influence to the

response. In fact, most engineering applications only require to consider

the first mode. Therefore, information from the higher modes may be lost

in the response.

Secondly, despite the measured response being assumed noise-free, noise

can not be completely eliminated. The commonly used noise-reduction

techniques in response-fitting are essentially pre-treatments such as

averaging the noise in the frequency domain. Since the participating

factors of higher modes are relatively small, these modes give poor

signal-to-noise ratios. The existence of these modes can hardly be

identified in a response function. Consequently, the order of the
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reference can not be determined by the response-fitting method unless more

sophisticated time domain modal analysis is used. It is conceivable that

without prior knowledge of the reference order, response-fitting is more

likely to accept a degenerate model with only the first few modes of the

real structural system.

Thirdly, the higher modes decay faster than the lower modes in a frce

decay response. This may also induce the problem of losing information

from the higher modes in a recorded response.

EXAMPLE 1: Figure 1 (a) shows a five story structure. This model steel

frame is considered to have at least fifteen degrees-of-

freedom. A free decay time history measured at a point on the

third floor of the frame is shown in Figure 1 (b). Two other

responses are also given here. They are calculated responses

from two analytical models one with 2 DOF the other with 3 DOF.

Although the 15 DOF structure should not be treated as a 2 or 3

DOF system, by using response-fitting, we could have accepted the

2 or 3 DOF analytical model as the real physical model.

FREQUENCY-FITTING

Frequency-fitting is another commonly applicable method for model

corrections. The reference in this method is the measured natural

frequencies which are either obtained directly from vibration test or

extracted through modal analysis. The two ways give damped and undamped

natural frequencies respectively. The number of the natural frequencies

collected in the reference corresponds to the order of the structural

system. So there has no problem in determining the number of modes in the

system. The cost function is given by
n

E( ) (a) 2 (2)

1=1(a) (a)

where () and 4 are the measured and calculated undamped natural
I I

frequencies of the ith mode respectively. a are the corresponding

weighted coefficients. Since this method utilizes information from all

relevant natural frequencies, which have been accurately measured, it has
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better overall performance over the response-fitting method. Especially,

frequency-fitting is suitable for correcting models with many higher modes

Equation (2) can be further modified by including both the natural

frequencies and the damping ratios in J.

n ( 0 (a) 2 (M) (a) 2Cw€= E-cc + 61( ( 3)

1=1

where denotes the Ith damping ratio of (m) or (a). This improved

Equation (3) is suitable for correcting models demanding high accuracy for

both natural frequencies and damping ratios.

A useful variation of the above method is the less accurate FRF curve-

fitting technique. Similar to Equation (1), the cost function in this

case is

- (M) _ (a))2 (4)
j = E I 4

1=1

where f is the i t h sample taken from the reference FRF (m) or the

analytical FRF (a). p is the total number of samples. Selection of weighted

coefficients is empirical. If the FRF samples are collected from a forced

response with a feedback controlled excitation whose input spectrum has

been kept a straight line, then a are the same for all i = 1, ... , n.

In using Equation (2), a correspondence between the referential and the

analytical frequencies must be established first. One such correspondence

is described below.

Consider the two sets of natural frequencies
(in) (a)

{ I 1t=1......n} and {w ) J =...... n}

First, arrange them by a linear ordering

(M) i) ( (M) (M)

1 2 3 n

(5)
(a) u)(a) (a) (a)
J .1 J .1

1 2 3 n

where the 6ubscripts are some permutations of 1, 2,..., n. Then the

frequencies are paired according to the ordering. With this one-one
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correspondence, Equation (2) can be restated as

(M) (a) 2 (M) ia) 2 (M) (a) 2a W W ) + ( - W ) . +a( _ W ).1 t1 J1 2 t2  J2

Such a correspondence has the nice mathematical property that it gives the

cost function J the smallest value when the weighted coefficients in

Equation (2) are the same.

There are some problems with response-fitting method too. This can be seen

from the following example.

EXAMPLE 2: A 4 DOF structure is shown in Figure 2 (a). Its physical model

and an analytical model have the generalized damping and stiffness

matrices as given in Table 1 (a), (b) respectively. Figure 2 (b)

gives two FRE's, in which the dotted curve is frorl the physical

model and the dashed curve is from the analytical model.

Table I (a) Generalized Damping Matrices M-IC

Physical Analytical

27.3598 -19.2436 -22.8993 24.2555 6.3384 -1.3278 -1.2976 0.6308

32.2713 1.7445 -23.1446 3.1574 -0.7730 -1.1894

43.2177 -32.4571 3.1408 -1.6335

49.1511 2.5634

Table 1 (b) Generalized Stiffness Matrices M "K 1,000 x

Physical Analytical

8.3284 -2.7139 -2.6032 2.3111 8.3130 -2.7085 -2.5973 2.3056

1.8560 0.1289 -0.8413 1.8549 0.1266 -0.8398

2.3377 -1.5225 2.3361 -1.5209

1.4619 1.4607

Tt is ciear that the generalized damping matrices of these two models are

quite different. In fact, the physical model is non-proportionally damped

whereas the analytical model is proportionally damped. ( most finite

element algorithms only generate proportionally damped models ).

Consequently, the mode shapes of these two models are different. The first
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model has complex-valued mode shapes but the s.cond has only real-valuea

ones. Such differences can not be detect-d in a single pair of frequency

response functions. Therefore, curve-fitting FRF or frequency-fitting is

inadequate for correcting errors in such category. This is seen in Figure

2 (b), where, in spite of the aforementioned differences between the two

models, the two FRE still appear to be close.

COMPLETE MODAL-FITTING

A more sophisticated fitting method is developed by include the mode shape

influences into the cost function, namely
n

j = ( a(M- (a) )2 + () - (a)
! i I I

-1

M) (a)) H I" 1 (p(m) -p a ) ()

where p) is the ith mode shape, and r is a diagonal matrix which consists

of weighted coefficients. A simplified version of Equation (6) is

n
J =, ( ( ) _ (a)) 2

(M) P(a) )H r P(m) (a). 7

i I ! I i

Since the complete set of modal parameters is employed in Equation (6), it

Ic called the complete modal-fitting. However, complete modal-fitting does

not always give a satisfactory correction to an analytical model. One

problem is related to the mode shapes. For example, the error in a

measured mode shape could reach as high as 500%. (Liang & Inman 1988).

Under this circumstance, the weighted coefficients F must be assigned

with very small values. Therefore, the modification effect from mode

shapes is limited.

WEAKNESS OF AVAILABLE CORRECTION METHODS

In the preceding sections, we briefly reviewed some commonly used model

correction procedures. None of these methods is sufficient in terms of the

correction effectiveness. There are certain types of errors in the

anrlytical model that may not be eliminated through the model corrections.
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One of the shortfalls is that the cost function J is based on numerical

judgments of some necessary but not sufficient properties of the model.

Therefore, no matter how small the value of J could be reduced to, the

correction effect still may not be greatly improved. In addition, there

exist possible experimental errors as well. So it is necessary to

establish more suitable criteria for evaluations of the correction effects.

The goal of model correction is to obtain the correct M, C, and K matrices.

However, in many engineering applications, it is the properties of the

structural system that are of our interests. As described at the

introduction section, using the M-C-K model we can calculate these

system's properties. On the other hand, when some of the properties the

systems are known such as the order of the system, they may be used in

model corrections. Fclowing this line of thought, we can ccrisider and

treat model correction on the basis of its ability of preserving system

properties in addition to its ability to satisfy the prescribed numerical

criteria such as cost function J. Since there is no single property

of the system that is strong enough to guarantee the correctness of the

physical model (at least it is the case at present), the best analytical

model is the one that preserves most properties of the system.

CORRECT CORRESPONDENCE AND ITS INTERPRETATION IN MODUFT. CORRCTT nrm

Consider again the 5-story structure shown in Figure I (a). A diagrammatic

finite element representation generated according to the real measurements

is shown in Figure 3 (a). In Figure 3 (b) and (c), the modal deformations

of the first and second modes of the structural system are illustrated.

Figure 3 (b) shows a simple translational mode and Figure 3 (c) shows a

simple torsional mode. In more complicated situations, modes of the

structural system may not be as simple as the ones given in these figures.

Nevertheless, they posse- distinct medal deformations, which %re Lhe

most basic dynamic performances of the structural system. Since the

structural system for testing is also the object for finite elemern

modeling, the modal deformations of the modes obtained from the two

approaches should be essentially the same, despite of numerical

disparities due to the errors of measurements and calculations. Based on
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this observation, we investigate in the following some possible model

correction methods that make the revised analytical model preserve similar

modal deformations as the real structural system.

The invariance of modal deformations for the modes Iz both physical and

analytical models can be characterized by the correct correspondence

between the modes (system eigenvalues and system eigenvectors) of the two

models. Conceptually, it is easy to understand that such a correspondence

should relate the modes with similar deformations to each other. To

establish such correspondence however, we have to define the correct

correspondence in terms of model elements. In usual, the stiffness K and

the mass M of the analytical model are obtained with more accuracy than

damping matrix C, a correct correspondence can be obtained easily between

the stiffness elgenvalues of the physical and analytical models. Since

each individual mode is dominated by an unique stiffness elgenvalue, we

can achieve the correct correspondence of modes of the physical and

analytical models by first numbering the modes In each model with respect

to the given subscripts of the stiffness elgenvalues in that model, and

then relate the modes according to the correct correspondence between the

stiffness eigenvalues of the two models.

Examine the governing equation

MX + CX + KX = F (8)

where M, C and K are mass, damping and stiffness matrices respectively.

Vectors X, X, X and F denote the acceleration, velocity, displacement and

forcing function respectively. In free vibration, F is zero. Equation (8)

becomes

MX + CX + KX = 0 (9)

Applying some matrix operations to Equation (9), we obtain the following

D-A model
k

19 + DY + A Y = 0 (10)

where I is an identity matrix, aiid Y T M1/2 X

1 2

QT M-1/2C M-1/2Q and AT= QM-1/2 KM-1/2Q =2

k
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Q is an orthogonal matrix. This is called the canonical vibration model

Liang et al 1990 ). Its advantage over the general vibration model (9) lies

in the simplification of M and K matrices. With A diagonal, the stiffnessk

e!genvectors in this model are always e ( the unit vectors ) i = 1, 2,

n. Now we discuss how to number the modes with respect to subscript i.

In the case of a proportionally damped system, it is known that CLtghey's

criterion (Caughey, 1976)

D A = AD (1)
k k

is satisfied. Using Equation (l1, we can find an orthogonal matrix R. By

applying R from the left and the Hermitian transpose of R from the right

to Equation (10), we have a canonical model with both RDRH and RA RH

diagonal. Such a system is completely decoupled. There are n separate

single DOF equations each of which corresponds to a mode of the system.

The numbering is easily determined in the way that the elgenvalue of the

4 th equation,

y + d y + = 0

is assigned with subscript I.

Let A , 1 .... An denote +he system eigenvalues and p 1 P2 ..... Pn

denote the mode shapes of an canonical model. A recent result by Liang et

al (1990) offers another convenient way to obtain the numbering. The result

unfolds the following property of a proportionally damped system

A 2 =, 2 ... , n (12)
2 ith

where w2 is the I eigenvalue of the stiffness matrix. The subscript I in

(12) enumerates the system eigenvalues such that it gives an one-one
2

correspondence between the system eigenvalues A and eigenvalues W of the

stiffness matrix. Since the inverse of this result is also valid, a system

satisfying (12) is automatically proportionally damped and possesses the

desired numbering.

Using complex-damping coefficients, the above numbering can be justified

in terms of the system energy relations. By definition, a complex-damping

coefficient Is a generalized Rayleigh quotient
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where qIs an egenvector of stiffness matrix, p is u system eigenvector.
I

a and b are the real and imaginary parts of a . For a different numberingI I

of the system's modes, we usually get a different set of corresponding

complex-damping coefficients. Otherwise the generalized Rayleigh quotients

are not defined at all. As reported by Liang and Lee (1990), there is one

correct set of complex-damping coefficients which can be used to describe

the energy transformations among the modes of a vibration system. In their

report a complex damping ratio i Is defined as

= a/ 2 w = 9 + J cl l I I

wnere w is the It h undamped natural frequency and ! is the ith damping

ratio. The I is a ratio of the energy transformed in a cycle over the

total energy stored before the cycle in the It h mode. If Is zero,

has no imaginary part. Thus there is no energy transformed into or out of

the ith mode. Consequently, such a mode can be decoupled from the system.

By this theory, the set of correct complex-damping coefficients for a

proportionally damped canonical vibration model is a set of real-valued

scalars, because in such model every mode can be decoupled. This condition

is satisfied by the complex-damping coefficients calculated with the

numbering described earlier. In fact, this numbering is the only one that

satisfies the requirement qI p r 0, for complex-damping coefficients.

For non-proportionally damped systems, the correct numbering is also

associated with the correct set of complex-damping coefficients, which

describe the energy transformations among the coupled modes. Although a

natural generalization of the numbering discussed for proportionally
2

damped systems, namely relating a stiffness eigenvalue w with a closest

X , is not correct in general for non-proportionally damped systems, (see

Tong et al), given the correct set of complex-damping coefficients, the

correct numbering is shown to be unique (see Tong et al). Therefore, we

can search the correct numbering from the complex-damping coefficients.
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By using the correcL '-orrespondence of modes in model corrections,

individual modes In the corrected r odel preserve their deformations. In most

cases, we may produce a model having similar energy transformation pattern

to the physical model. Due to the limit of space, we omit the examples.

COMPLEX DAMPING FITTING AND EIGEN-MATRIX FITTING

The fir't '.way to improve the correction procedures is to use the complex-

damping coefficients to determine the correct correspondence. The imaginary

part of a complex-damping ratio satisfies

= W exp ( ) 1 1, 2,. n (13)

when the system is lightly damped, i.e.

I t 5 0.3 , I = 1, 2 . .... n. (14)

Equation (14) is satisfied with most engineering structures.

In Equation (14), w is the square root of the rth eigenvalue of ther II

generalized stiffness matrix, where r is a designated permutation of

1, 2 ..... n. Thus, by using equation (14) and A we can determine the

correct correspondence quantitatively.

We propose a improved model correction criterion as follows.
n ( M) (a) 2 (M) (a) 2

J= a (Co - o ) f (I -W +)

1=1

(M) (a) 2 (M) (a) H r ( M) (a)

where 'I are weighted coefficients for least square approximation of ratio
(.)(i) (a) 2

<(.) The term ( M) - (a ) is a good monitor of non-proportionality.
I IWith the complex-damping ratios available and the systems considered being

lightly damped, The correct correspondence can be solved from Equation (13).

A second approach to deal with correct correspondence is to avoid using

the modal parameters mode by mode. Instead we can use a more general

convergence pattern so that the correct correspondence is assured through

the convergence. In this regard we have a choice of either using the state

matrix or using the elgen-matrix. Because the size of the state matrix is

2nx2n, (supposing the order of the system is n), we consider the eigen-
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matrix whose size is only nxn.

A,, elgen-matrix A Is defined by

A = P A p-(16)

where A is a diagonal matrix consists of all eigenvalues ' , 1 ,..n

of the system, and

t= -j( -1_ 1/2 (17)

A matrix A has the eigen-decomposition (16), if and

only if A satisfies the following quadratic matrix equation:

M A2 + C A + K = 0 (18)

where the coefficient matrices M, C and K are defined as in Equation (8).

From Equation (16), we can see intuitively, that convergence of an eigen-

matrix A involves global adjustments of all modal parameters Therefore,

the problem of correspondence will not occur here. The cost function can

be established by

J = 1) A"' -  A(" 11 (19)
(Mn) - (a)

where 1 . ii stands for a norm of matrix A - A . For example, it can

be the Frobenius norm,
n n

(I A ( )-  A(a) 11 Z Z I a M ) a (a) 12 1/2 (20)
i=1 J=1

where a( ) is the ij entry of matrix A( . Or it can be a p-norm, such
11

as the 2-norm,

J = iA( - A (a)1i 2 A [(A() - A(a) )H(A()- A(a))] }/2 (21)
2 max

where X [. ] is the maximum eigenvalue of matrix [.]
max

CONCLUDING REMARKS

In this paper, we first examined several model correction procedvres

and their common weaknesses. Most available methods emphasize the speed of

numerical convergence. In this study we pay attention to the validity of

the corrections. We suggested methods to improve some of correction

procedures by using the correct correspondence between the modes of

physical and analytical models. This study results in the improvement of

finite element modeling. It is also shown that a strong connection exist

between the theoretical studies such as the complex damping theory and

the various practical applications.
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